| @@ -0,0 +1,91 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "pre_activate/ascend/ir_fission/lars_v2_fission.h" | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "session/anf_runtime_algorithm.h" | |||
| #include "pre_activate/common/helper.h" | |||
| #include "utils/utils.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| void CreateOutputsOfSquareSumAll(const FuncGraphPtr &graph, const CNodePtr &lars_v2, | |||
| std::vector<AnfNodePtr> *square_sum_all_outputs) { | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| MS_EXCEPTION_IF_NULL(lars_v2); | |||
| if (lars_v2->size() != kLarsV2InputNum) { | |||
| MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum; | |||
| } | |||
| std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kSquareSumAllOpName))}; | |||
| inputs.push_back(lars_v2->input(1)); | |||
| inputs.push_back(lars_v2->input(2)); | |||
| auto square_sum_all = graph->NewCNode(inputs); | |||
| MS_EXCEPTION_IF_NULL(square_sum_all); | |||
| square_sum_all->set_scope(lars_v2->scope()); | |||
| auto types = {kNumberTypeFloat32, kNumberTypeFloat32}; | |||
| std::vector<size_t> shape; | |||
| auto shapes = {shape, shape}; | |||
| AnfAlgo::SetOutputInferTypeAndShape(types, shapes, square_sum_all.get()); | |||
| CreateMultipleOutputsOfAnfNode(graph, square_sum_all, 2, square_sum_all_outputs); | |||
| } | |||
| CNodePtr CreateLarsV2Update(const FuncGraphPtr &graph, const CNodePtr &lars_v2, | |||
| const std::vector<AnfNodePtr> &square_sum_all_outputs) { | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| MS_EXCEPTION_IF_NULL(lars_v2); | |||
| if (square_sum_all_outputs.size() != 2) { | |||
| MS_LOG(EXCEPTION) << "square_sum_all_outputs' size not equal 2"; | |||
| } | |||
| if (lars_v2->size() != kLarsV2InputNum) { | |||
| MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum; | |||
| } | |||
| std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kLarsV2UpdateOpName))}; | |||
| inputs.push_back(lars_v2->input(1)); | |||
| inputs.push_back(lars_v2->input(2)); | |||
| inputs.push_back(square_sum_all_outputs[0]); | |||
| inputs.push_back(square_sum_all_outputs[1]); | |||
| inputs.push_back(lars_v2->input(3)); | |||
| inputs.push_back(lars_v2->input(4)); | |||
| auto lars_v2_update = graph->NewCNode(inputs); | |||
| MS_EXCEPTION_IF_NULL(lars_v2_update); | |||
| lars_v2_update->set_scope(lars_v2->scope()); | |||
| lars_v2_update->set_abstract(lars_v2->abstract()); | |||
| return lars_v2_update; | |||
| } | |||
| } // namespace | |||
| const BaseRef LarsV2Fission::DefinePattern() const { | |||
| VarPtr Xs = std::make_shared<SeqVar>(); | |||
| auto lars_v2_prim = std::make_shared<Primitive>(kLarsV2OpName); | |||
| return VectorRef({lars_v2_prim, Xs}); | |||
| } | |||
| const AnfNodePtr LarsV2Fission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const { | |||
| MS_EXCEPTION_IF_NULL(graph); | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| auto lars_v2 = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(lars_v2); | |||
| std::vector<AnfNodePtr> square_sum_all_outputs; | |||
| CreateOutputsOfSquareSumAll(graph, lars_v2, &square_sum_all_outputs); | |||
| return CreateLarsV2Update(graph, lars_v2, square_sum_all_outputs); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,32 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_ | |||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_ | |||
| #include "pre_activate/common/optimizer.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class LarsV2Fission : public PatternProcessPass { | |||
| public: | |||
| explicit LarsV2Fission(bool multigraph = true) : PatternProcessPass("lars_v2_fission", multigraph) {} | |||
| ~LarsV2Fission() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_ | |||
| @@ -91,6 +91,7 @@ constexpr size_t kBackendTransDataInputNum = 2; | |||
| constexpr size_t kApplyMomentumInputNum = 6; | |||
| constexpr size_t kBiasAddInputNum = 3; | |||
| constexpr size_t kTopkInputNum = 3; | |||
| constexpr size_t kLarsV2InputNum = 5; | |||
| enum FusedBatchNormInput { | |||
| kX = 1, | |||
| @@ -144,6 +144,9 @@ constexpr auto kBNInferGradOpName = "BNInferGrad"; | |||
| constexpr auto kCallOpName = "call"; | |||
| constexpr auto kPartialOpName = "partial"; | |||
| constexpr auto kSwitchOpName = "switch"; | |||
| constexpr auto kLarsV2OpName = "LarsV2"; | |||
| constexpr auto kLarsV2UpdateOpName = "LarsV2Update"; | |||
| constexpr auto kSquareSumAllOpName = "SquareSumAll"; | |||
| // attr key name | |||
| constexpr auto kAttrInputNames = "input_names"; | |||
| @@ -0,0 +1,56 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/backend_common_test.h" | |||
| #include "common/py_func_graph_fetcher.h" | |||
| #include "pre_activate/ascend/ir_fission/lars_v2_fission.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class TestHWLarsV2Fission : public BackendCommon { | |||
| public: | |||
| TestHWLarsV2Fission() : get_py_fun_("gtest_input.pre_activate.lars_v2_fission_test", true) {} | |||
| ~TestHWLarsV2Fission() override = default; | |||
| UT::PyFuncGraphFetcher get_py_fun_; | |||
| }; | |||
| TEST_F(TestHWLarsV2Fission, test_fission) { | |||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "before"); | |||
| EXPECT_NE(g, nullptr); | |||
| // set abstract for all nodes in g | |||
| std::vector<int> shp{2, 32, 224, 224}; | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp); | |||
| g->get_return()->input(1)->set_abstract(x_abstract); | |||
| for (auto &p: g->parameters()){ | |||
| p->set_abstract(x_abstract); | |||
| } | |||
| AbstractBasePtrList args_spec_list; | |||
| auto kg = GetKernelGraph(g, args_spec_list, false); | |||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pm = std::make_shared<opt::PassManager>(); | |||
| pm->AddPass(std::make_shared<opt::LarsV2Fission>()); | |||
| optimizer->AddPassManager(pm); | |||
| FuncGraphPtr new_graph = optimizer->Optimize(kg); | |||
| FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "after"); | |||
| EXPECT_NE(g_after, nullptr); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_graph)); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,50 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| from mindspore.ops import Primitive | |||
| lars_v2 = Primitive('LarsV2') | |||
| square_sum_all = Primitive('SquareSumAll') | |||
| lars_v2_update = Primitive('LarsV2Update') | |||
| make_tuple = Primitive('make_tuple') | |||
| tuple_getitem = Primitive('tuple_getitem') | |||
| class FnDict: | |||
| def __init__(self): | |||
| self.fnDict = {} | |||
| def __call__(self, fn): | |||
| self.fnDict[fn.__name__] = fn | |||
| def __getitem__(self, name): | |||
| return self.fnDict[name] | |||
| def test_lars_v2_fission(tag): | |||
| fns = FnDict() | |||
| @fns | |||
| def before(input0, input1, input2, input3): | |||
| res = lars_v2(input0, input1, input2, input3) | |||
| return res | |||
| @fns | |||
| def after(input0, input1, input2, input3): | |||
| res = square_sum_all(input0, input1) | |||
| item0 = tuple_getitem(res, 0) | |||
| item1 = tuple_getitem(res, 1) | |||
| res = lars_v2_update(input0, input1, item0, item1, input2, input3) | |||
| return make_tuple(res) | |||
| return fns[tag] | |||