Merge pull request !21 from wukesong/add_lenet_alexnettags/v0.2.0-alpha
| @@ -0,0 +1,32 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| network config setting, will be used in train.py | |||||
| """ | |||||
| from easydict import EasyDict as edict | |||||
| alexnet_cfg = edict({ | |||||
| 'num_classes': 10, | |||||
| 'learning_rate': 0.002, | |||||
| 'momentum': 0.9, | |||||
| 'epoch_size': 1, | |||||
| 'batch_size': 32, | |||||
| 'buffer_size': 1000, | |||||
| 'image_height': 227, | |||||
| 'image_width': 227, | |||||
| 'save_checkpoint_steps': 1562, | |||||
| 'keep_checkpoint_max': 10, | |||||
| }) | |||||
| @@ -0,0 +1,54 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| Produce the dataset | |||||
| """ | |||||
| from config import alexnet_cfg as cfg | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| import mindspore.dataset.transforms.vision.c_transforms as CV | |||||
| from mindspore.common import dtype as mstype | |||||
| def create_dataset(data_path, batch_size=32, repeat_size=1, status="train"): | |||||
| """ | |||||
| create dataset for train or test | |||||
| """ | |||||
| cifar_ds = ds.Cifar10Dataset(data_path) | |||||
| rescale = 1.0 / 255.0 | |||||
| shift = 0.0 | |||||
| resize_op = CV.Resize((cfg.image_height, cfg.image_width)) | |||||
| rescale_op = CV.Rescale(rescale, shift) | |||||
| normalize_op = CV.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)) | |||||
| if status == "train": | |||||
| random_crop_op = CV.RandomCrop([32, 32], [4, 4, 4, 4]) | |||||
| random_horizontal_op = CV.RandomHorizontalFlip() | |||||
| channel_swap_op = CV.HWC2CHW() | |||||
| typecast_op = C.TypeCast(mstype.int32) | |||||
| cifar_ds = cifar_ds.map(input_columns="label", operations=typecast_op) | |||||
| if status == "train": | |||||
| cifar_ds = cifar_ds.map(input_columns="image", operations=random_crop_op) | |||||
| cifar_ds = cifar_ds.map(input_columns="image", operations=random_horizontal_op) | |||||
| cifar_ds = cifar_ds.map(input_columns="image", operations=resize_op) | |||||
| cifar_ds = cifar_ds.map(input_columns="image", operations=rescale_op) | |||||
| cifar_ds = cifar_ds.map(input_columns="image", operations=normalize_op) | |||||
| cifar_ds = cifar_ds.map(input_columns="image", operations=channel_swap_op) | |||||
| cifar_ds = cifar_ds.shuffle(buffer_size=cfg.buffer_size) | |||||
| cifar_ds = cifar_ds.batch(batch_size, drop_remainder=True) | |||||
| cifar_ds = cifar_ds.repeat(repeat_size) | |||||
| return cifar_ds | |||||
| @@ -0,0 +1,58 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ######################## eval alexnet example ######################## | |||||
| eval alexnet according to model file: | |||||
| python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt | |||||
| """ | |||||
| import argparse | |||||
| from config import alexnet_cfg as cfg | |||||
| from dataset import create_dataset | |||||
| import mindspore.nn as nn | |||||
| from mindspore import context | |||||
| from mindspore.model_zoo.alexnet import AlexNet | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.train import Model | |||||
| from mindspore.nn.metrics import Accuracy | |||||
| if __name__ == "__main__": | |||||
| parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], | |||||
| help='device where the code will be implemented (default: Ascend)') | |||||
| parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') | |||||
| parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\ | |||||
| path where the trained ckpt file') | |||||
| parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True') | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False) | |||||
| network = AlexNet(cfg.num_classes) | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| repeat_size = cfg.epoch_size | |||||
| opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum) | |||||
| model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test | |||||
| print("============== Starting Testing ==============") | |||||
| param_dict = load_checkpoint(args.ckpt_path) | |||||
| load_param_into_net(network, param_dict) | |||||
| ds_eval = create_dataset(args.data_path, | |||||
| cfg.batch_size, | |||||
| 1, | |||||
| "test") | |||||
| acc = model.eval(ds_eval, dataset_sink_mode=args.dataset_sink_mode) | |||||
| print("============== Accuracy:{} ==============".format(acc)) | |||||
| @@ -0,0 +1,58 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ######################## train alexnet example ######################## | |||||
| train alexnet and get network model files(.ckpt) : | |||||
| python train.py --data_path /YourDataPath | |||||
| """ | |||||
| import argparse | |||||
| from config import alexnet_cfg as cfg | |||||
| from dataset import create_dataset | |||||
| import mindspore.nn as nn | |||||
| from mindspore import context | |||||
| from mindspore.train import Model | |||||
| from mindspore.nn.metrics import Accuracy | |||||
| from mindspore.model_zoo.alexnet import AlexNet | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | |||||
| if __name__ == "__main__": | |||||
| parser = argparse.ArgumentParser(description='MindSpore AlexNet Example') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], | |||||
| help='device where the code will be implemented (default: Ascend)') | |||||
| parser.add_argument('--data_path', type=str, default="./", help='path where the dataset is saved') | |||||
| parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\ | |||||
| path where the trained ckpt file') | |||||
| parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True') | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False) | |||||
| network = AlexNet(cfg.num_classes) | |||||
| loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| opt = nn.Momentum(network.trainable_params(), cfg.learning_rate, cfg.momentum) | |||||
| model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test | |||||
| print("============== Starting Training ==============") | |||||
| ds_train = create_dataset(args.data_path, | |||||
| cfg.batch_size, | |||||
| cfg.epoch_size, | |||||
| "train") | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, | |||||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_alexnet", directory=args.ckpt_path, config=config_ck) | |||||
| model.train(cfg.epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor()], | |||||
| dataset_sink_mode=args.dataset_sink_mode) | |||||
| @@ -1,125 +0,0 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ######################## train and test lenet example ######################## | |||||
| 1. train lenet and get network model files(.ckpt) : | |||||
| python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data | |||||
| 2. test lenet according to model file: | |||||
| python main.py --data_path /home/workspace/mindspore_dataset/Tutorial_Network/Lenet/MNIST_Data | |||||
| --mode test --ckpt_path checkpoint_lenet_1-1_1875.ckpt | |||||
| """ | |||||
| import os | |||||
| import argparse | |||||
| from config import mnist_cfg as cfg | |||||
| import mindspore.dataengine as de | |||||
| import mindspore.nn as nn | |||||
| from mindspore.model_zoo.lenet import LeNet5 | |||||
| from mindspore import context, Tensor | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | |||||
| from mindspore.train import Model | |||||
| import mindspore.ops.operations as P | |||||
| import mindspore.transforms.c_transforms as C | |||||
| from mindspore.transforms import Inter | |||||
| from mindspore.nn.metrics import Accuracy | |||||
| from mindspore.ops import functional as F | |||||
| from mindspore.common import dtype as mstype | |||||
| class CrossEntropyLoss(nn.Cell): | |||||
| """ | |||||
| Define loss for network | |||||
| """ | |||||
| def __init__(self): | |||||
| super(CrossEntropyLoss, self).__init__() | |||||
| self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() | |||||
| self.mean = P.ReduceMean() | |||||
| self.one_hot = P.OneHot() | |||||
| self.on_value = Tensor(1.0, mstype.float32) | |||||
| self.off_value = Tensor(0.0, mstype.float32) | |||||
| def construct(self, logits, label): | |||||
| label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value) | |||||
| loss = self.cross_entropy(logits, label)[0] | |||||
| loss = self.mean(loss, (-1,)) | |||||
| return loss | |||||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||||
| num_parallel_workers=1): | |||||
| """ | |||||
| create dataset for train or test | |||||
| """ | |||||
| # define dataset | |||||
| ds1 = de.MnistDataset(data_path) | |||||
| # apply map operations on images | |||||
| ds1 = ds1.map(input_columns="label", operations=C.TypeCast(mstype.int32)) | |||||
| ds1 = ds1.map(input_columns="image", operations=C.Resize((cfg.image_height, cfg.image_width), | |||||
| interpolation=Inter.LINEAR), | |||||
| num_parallel_workers=num_parallel_workers) | |||||
| ds1 = ds1.map(input_columns="image", operations=C.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081), | |||||
| num_parallel_workers=num_parallel_workers) | |||||
| ds1 = ds1.map(input_columns="image", operations=C.Rescale(1.0 / 255.0, 0.0), | |||||
| num_parallel_workers=num_parallel_workers) | |||||
| ds1 = ds1.map(input_columns="image", operations=C.HWC2CHW(), num_parallel_workers=num_parallel_workers) | |||||
| # apply DatasetOps | |||||
| ds1 = ds1.shuffle(buffer_size=cfg.buffer_size) # 10000 as in LeNet train script | |||||
| ds1 = ds1.batch(batch_size, drop_remainder=True) | |||||
| ds1 = ds1.repeat(repeat_size) | |||||
| return ds1 | |||||
| if __name__ == "__main__": | |||||
| parser = argparse.ArgumentParser(description='MindSpore MNIST Example') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], | |||||
| help='device where the code will be implemented (default: Ascend)') | |||||
| parser.add_argument('--mode', type=str, default="train", choices=['train', 'test'], | |||||
| help='implement phase, set to train or test') | |||||
| parser.add_argument('--data_path', type=str, default="./MNIST_Data", | |||||
| help='path where the dataset is saved') | |||||
| parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\ | |||||
| path where the trained ckpt file') | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) | |||||
| network = LeNet5(cfg.num_classes) | |||||
| network.set_train() | |||||
| # net_loss = nn.SoftmaxCrossEntropyWithLogits() # support this loss soon | |||||
| net_loss = CrossEntropyLoss() | |||||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, | |||||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) | |||||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||||
| if args.mode == 'train': # train | |||||
| ds = create_dataset(os.path.join(args.data_path, args.mode), batch_size=cfg.batch_size, | |||||
| repeat_size=cfg.epoch_size) | |||||
| print("============== Starting Training ==============") | |||||
| model.train(cfg['epoch_size'], ds, callbacks=[ckpoint_cb, LossMonitor()], dataset_sink_mode=False) | |||||
| elif args.mode == 'test': # test | |||||
| print("============== Starting Testing ==============") | |||||
| param_dict = load_checkpoint(args.ckpt_path) | |||||
| load_param_into_net(network, param_dict) | |||||
| ds_eval = create_dataset(os.path.join(args.data_path, "test"), 32, 1) | |||||
| acc = model.eval(ds_eval, dataset_sink_mode=False) | |||||
| print("============== Accuracy:{} ==============".format(acc)) | |||||
| else: | |||||
| raise RuntimeError('mode should be train or test, rather than {}'.format(args.mode)) | |||||
| @@ -13,8 +13,9 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """ | """ | ||||
| network config setting, will be used in main.py | |||||
| network config setting, will be used in train.py | |||||
| """ | """ | ||||
| from easydict import EasyDict as edict | from easydict import EasyDict as edict | ||||
| mnist_cfg = edict({ | mnist_cfg = edict({ | ||||
| @@ -23,7 +24,6 @@ mnist_cfg = edict({ | |||||
| 'momentum': 0.9, | 'momentum': 0.9, | ||||
| 'epoch_size': 1, | 'epoch_size': 1, | ||||
| 'batch_size': 32, | 'batch_size': 32, | ||||
| 'repeat_size': 1, | |||||
| 'buffer_size': 1000, | 'buffer_size': 1000, | ||||
| 'image_height': 32, | 'image_height': 32, | ||||
| 'image_width': 32, | 'image_width': 32, | ||||
| @@ -0,0 +1,60 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| Produce the dataset | |||||
| """ | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.transforms.vision.c_transforms as CV | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore.dataset.transforms.vision import Inter | |||||
| from mindspore.common import dtype as mstype | |||||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||||
| num_parallel_workers=1): | |||||
| """ | |||||
| create dataset for train or test | |||||
| """ | |||||
| # define dataset | |||||
| mnist_ds = ds.MnistDataset(data_path) | |||||
| resize_height, resize_width = 32, 32 | |||||
| rescale = 1.0 / 255.0 | |||||
| shift = 0.0 | |||||
| rescale_nml = 1 / 0.3081 | |||||
| shift_nml = -1 * 0.1307 / 0.3081 | |||||
| # define map operations | |||||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||||
| rescale_op = CV.Rescale(rescale, shift) | |||||
| hwc2chw_op = CV.HWC2CHW() | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| # apply map operations on images | |||||
| mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) | |||||
| # apply DatasetOps | |||||
| buffer_size = 10000 | |||||
| mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script | |||||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||||
| return mnist_ds | |||||
| @@ -0,0 +1,64 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ######################## eval lenet example ######################## | |||||
| eval lenet according to model file: | |||||
| python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt | |||||
| """ | |||||
| import os | |||||
| import argparse | |||||
| from dataset import create_dataset | |||||
| from config import mnist_cfg as cfg | |||||
| import mindspore.nn as nn | |||||
| from mindspore.model_zoo.lenet import LeNet5 | |||||
| from mindspore import context | |||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig | |||||
| from mindspore.train import Model | |||||
| from mindspore.nn.metrics import Accuracy | |||||
| if __name__ == "__main__": | |||||
| parser = argparse.ArgumentParser(description='MindSpore MNIST Example') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], | |||||
| help='device where the code will be implemented (default: Ascend)') | |||||
| parser.add_argument('--data_path', type=str, default="./MNIST_Data", | |||||
| help='path where the dataset is saved') | |||||
| parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide\ | |||||
| path where the trained ckpt file') | |||||
| parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True') | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False) | |||||
| network = LeNet5(cfg.num_classes) | |||||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| repeat_size = cfg.epoch_size | |||||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, | |||||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) | |||||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||||
| print("============== Starting Testing ==============") | |||||
| param_dict = load_checkpoint(args.ckpt_path) | |||||
| load_param_into_net(network, param_dict) | |||||
| ds_eval = create_dataset(os.path.join(args.data_path, "test"), | |||||
| cfg.batch_size, | |||||
| 1) | |||||
| acc = model.eval(ds_eval, dataset_sink_mode=args.dataset_sink_mode) | |||||
| print("============== Accuracy:{} ==============".format(acc)) | |||||
| @@ -0,0 +1,58 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| ######################## train lenet example ######################## | |||||
| train lenet and get network model files(.ckpt) : | |||||
| python train.py --data_path /YourDataPath | |||||
| """ | |||||
| import os | |||||
| import argparse | |||||
| from config import mnist_cfg as cfg | |||||
| from dataset import create_dataset | |||||
| import mindspore.nn as nn | |||||
| from mindspore.model_zoo.lenet import LeNet5 | |||||
| from mindspore import context | |||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | |||||
| from mindspore.train import Model | |||||
| from mindspore.nn.metrics import Accuracy | |||||
| if __name__ == "__main__": | |||||
| parser = argparse.ArgumentParser(description='MindSpore MNIST Example') | |||||
| parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], | |||||
| help='device where the code will be implemented (default: Ascend)') | |||||
| parser.add_argument('--data_path', type=str, default="./MNIST_Data", | |||||
| help='path where the dataset is saved') | |||||
| parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True') | |||||
| args = parser.parse_args() | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, enable_mem_reuse=False) | |||||
| network = LeNet5(cfg.num_classes) | |||||
| net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean") | |||||
| net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) | |||||
| config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps, | |||||
| keep_checkpoint_max=cfg.keep_checkpoint_max) | |||||
| ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck) | |||||
| model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) | |||||
| ds_train = create_dataset(os.path.join(args.data_path, "train"), | |||||
| cfg.batch_size, | |||||
| cfg.epoch_size) | |||||
| print("============== Starting Training ==============") | |||||
| model.train(cfg['epoch_size'], ds_train, callbacks=[ckpoint_cb, LossMonitor()], | |||||
| dataset_sink_mode=args.dataset_sink_mode) | |||||
| @@ -0,0 +1,73 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Alexnet.""" | |||||
| import mindspore.nn as nn | |||||
| from mindspore.common.initializer import TruncatedNormal | |||||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0, pad_mode="valid"): | |||||
| weight = weight_variable() | |||||
| return nn.Conv2d(in_channels, out_channels, | |||||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||||
| weight_init=weight, has_bias=False, pad_mode=pad_mode) | |||||
| def fc_with_initialize(input_channels, out_channels): | |||||
| weight = weight_variable() | |||||
| bias = weight_variable() | |||||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||||
| def weight_variable(): | |||||
| return TruncatedNormal(0.02) # 0.02 | |||||
| class AlexNet(nn.Cell): | |||||
| """ | |||||
| Alexnet | |||||
| """ | |||||
| def __init__(self, num_classes=10): | |||||
| super(AlexNet, self).__init__() | |||||
| self.batch_size = 32 | |||||
| self.conv1 = conv(3, 96, 11, stride=4) | |||||
| self.conv2 = conv(96, 256, 5, pad_mode="same") | |||||
| self.conv3 = conv(256, 384, 3, pad_mode="same") | |||||
| self.conv4 = conv(384, 384, 3, pad_mode="same") | |||||
| self.conv5 = conv(384, 256, 3, pad_mode="same") | |||||
| self.relu = nn.ReLU() | |||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=3, stride=2) | |||||
| self.flatten = nn.Flatten() | |||||
| self.fc1 = fc_with_initialize(6*6*256, 4096) | |||||
| self.fc2 = fc_with_initialize(4096, 4096) | |||||
| self.fc3 = fc_with_initialize(4096, num_classes) | |||||
| def construct(self, x): | |||||
| x = self.conv1(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.conv2(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.conv3(x) | |||||
| x = self.relu(x) | |||||
| x = self.conv4(x) | |||||
| x = self.relu(x) | |||||
| x = self.conv5(x) | |||||
| x = self.relu(x) | |||||
| x = self.max_pool2d(x) | |||||
| x = self.flatten(x) | |||||
| x = self.fc1(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc2(x) | |||||
| x = self.relu(x) | |||||
| x = self.fc3(x) | |||||
| return x | |||||
| @@ -13,7 +13,6 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| """LeNet.""" | """LeNet.""" | ||||
| import mindspore.ops.operations as P | |||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| from mindspore.common.initializer import TruncatedNormal | from mindspore.common.initializer import TruncatedNormal | ||||
| @@ -62,7 +61,7 @@ class LeNet5(nn.Cell): | |||||
| self.fc3 = fc_with_initialize(84, self.num_class) | self.fc3 = fc_with_initialize(84, self.num_class) | ||||
| self.relu = nn.ReLU() | self.relu = nn.ReLU() | ||||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | ||||
| self.reshape = P.Reshape() | |||||
| self.flatten = nn.Flatten() | |||||
| def construct(self, x): | def construct(self, x): | ||||
| x = self.conv1(x) | x = self.conv1(x) | ||||
| @@ -71,7 +70,7 @@ class LeNet5(nn.Cell): | |||||
| x = self.conv2(x) | x = self.conv2(x) | ||||
| x = self.relu(x) | x = self.relu(x) | ||||
| x = self.max_pool2d(x) | x = self.max_pool2d(x) | ||||
| x = self.reshape(x, (self.batch_size, -1)) | |||||
| x = self.flatten(x) | |||||
| x = self.fc1(x) | x = self.fc1(x) | ||||
| x = self.relu(x) | x = self.relu(x) | ||||
| x = self.fc2(x) | x = self.fc2(x) | ||||