| @@ -26,7 +26,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| parser = argparse.ArgumentParser(description='CNNCTC_export') | parser = argparse.ArgumentParser(description='CNNCTC_export') | ||||
| parser.add_argument('--ckpt_file', type=str, default='./ckpts/cnn_ctc.ckpt', help='CNN&CTC ckpt file.') | parser.add_argument('--ckpt_file', type=str, default='./ckpts/cnn_ctc.ckpt', help='CNN&CTC ckpt file.') | ||||
| parser.add_argument('--output_file', type=str, default='cnn_ctc.air', help='CNN&CTC output air name.') | |||||
| parser.add_argument('--output_file', type=str, default='cnn_ctc', help='CNN&CTC output air name.') | |||||
| args_opt = parser.parse_args() | args_opt = parser.parse_args() | ||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||
| @@ -39,4 +39,4 @@ if __name__ == '__main__': | |||||
| # load the parameter into net | # load the parameter into net | ||||
| load_param_into_net(network, param_dict) | load_param_into_net(network, param_dict) | ||||
| input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32) | input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32) | ||||
| export(network, Tensor(input_data), file_name=args.model+'-300_11.air', file_format='AIR') | |||||
| export(network, Tensor(input_data), file_name=args.model+'-300_11', file_format='AIR') | |||||
| @@ -33,8 +33,8 @@ cifar_cfg = edict({ | |||||
| 'device_id': 0, | 'device_id': 0, | ||||
| 'keep_checkpoint_max': 10, | 'keep_checkpoint_max': 10, | ||||
| 'checkpoint_path': './train_googlenet_cifar10-125_390.ckpt', | 'checkpoint_path': './train_googlenet_cifar10-125_390.ckpt', | ||||
| 'onnx_filename': 'googlenet.onnx', | |||||
| 'air_filename': 'googlenet.air' | |||||
| 'onnx_filename': 'googlenet', | |||||
| 'air_filename': 'googlenet' | |||||
| }) | }) | ||||
| imagenet_cfg = edict({ | imagenet_cfg = edict({ | ||||
| @@ -54,8 +54,8 @@ imagenet_cfg = edict({ | |||||
| 'device_id': 0, | 'device_id': 0, | ||||
| 'keep_checkpoint_max': 10, | 'keep_checkpoint_max': 10, | ||||
| 'checkpoint_path': None, | 'checkpoint_path': None, | ||||
| 'onnx_filename': 'googlenet.onnx', | |||||
| 'air_filename': 'googlenet.air', | |||||
| 'onnx_filename': 'googlenet', | |||||
| 'air_filename': 'googlenet', | |||||
| # optimizer and lr related | # optimizer and lr related | ||||
| 'lr_scheduler': 'exponential', | 'lr_scheduler': 'exponential', | ||||
| @@ -26,7 +26,7 @@ from src.inception_v3 import InceptionV3 | |||||
| parser = argparse.ArgumentParser(description='inceptionv3 export') | parser = argparse.ArgumentParser(description='inceptionv3 export') | ||||
| parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv3 ckpt file.') | parser.add_argument('--ckpt_file', type=str, required=True, help='inceptionv3 ckpt file.') | ||||
| parser.add_argument('--output_file', type=str, default='inceptionv3.air', help='inceptionv3 output air name.') | |||||
| parser.add_argument('--output_file', type=str, default='inceptionv3', help='inceptionv3 output air name.') | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | ||||
| parser.add_argument('--width', type=int, default=299, help='input width') | parser.add_argument('--width', type=int, default=299, help='input width') | ||||
| parser.add_argument('--height', type=int, default=299, help='input height') | parser.add_argument('--height', type=int, default=299, help='input height') | ||||
| @@ -29,5 +29,5 @@ mnist_cfg = edict({ | |||||
| 'image_width': 32, | 'image_width': 32, | ||||
| 'save_checkpoint_steps': 1875, | 'save_checkpoint_steps': 1875, | ||||
| 'keep_checkpoint_max': 10, | 'keep_checkpoint_max': 10, | ||||
| 'air_name': "lenet.air", | |||||
| 'air_name': "lenet", | |||||
| }) | }) | ||||
| @@ -54,4 +54,4 @@ if __name__ == "__main__": | |||||
| # export network | # export network | ||||
| inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32) | inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32) | ||||
| export(network, inputs, file_name="lenet_quant.mindir", file_format='MINDIR', quant_mode='AUTO') | |||||
| export(network, inputs, file_name="lenet_quant", file_format='MINDIR', quant_mode='AUTO') | |||||
| @@ -42,7 +42,7 @@ def set_config(args): | |||||
| "platform": args.platform, | "platform": args.platform, | ||||
| "activation": "Softmax", | "activation": "Softmax", | ||||
| "export_format": "MINDIR", | "export_format": "MINDIR", | ||||
| "export_file": "mobilenetv2.mindir" | |||||
| "export_file": "mobilenetv2" | |||||
| }) | }) | ||||
| config_gpu = ed({ | config_gpu = ed({ | ||||
| "num_classes": 1000, | "num_classes": 1000, | ||||
| @@ -66,7 +66,7 @@ def set_config(args): | |||||
| "run_distribute": args.run_distribute, | "run_distribute": args.run_distribute, | ||||
| "activation": "Softmax", | "activation": "Softmax", | ||||
| "export_format": "MINDIR", | "export_format": "MINDIR", | ||||
| "export_file": "mobilenetv2.mindir" | |||||
| "export_file": "mobilenetv2" | |||||
| }) | }) | ||||
| config_ascend = ed({ | config_ascend = ed({ | ||||
| "num_classes": 1000, | "num_classes": 1000, | ||||
| @@ -93,7 +93,7 @@ def set_config(args): | |||||
| "run_distribute": int(os.getenv('RANK_SIZE', '1')) > 1., | "run_distribute": int(os.getenv('RANK_SIZE', '1')) > 1., | ||||
| "activation": "Softmax", | "activation": "Softmax", | ||||
| "export_format": "MINDIR", | "export_format": "MINDIR", | ||||
| "export_file": "mobilenetv2.mindir" | |||||
| "export_file": "mobilenetv2" | |||||
| }) | }) | ||||
| config = ed({"CPU": config_cpu, | config = ed({"CPU": config_cpu, | ||||
| "GPU": config_gpu, | "GPU": config_gpu, | ||||
| @@ -51,5 +51,5 @@ if __name__ == '__main__': | |||||
| # export network | # export network | ||||
| print("============== Starting export ==============") | print("============== Starting export ==============") | ||||
| inputs = Tensor(np.ones([1, 3, cfg.image_height, cfg.image_width]), mindspore.float32) | inputs = Tensor(np.ones([1, 3, cfg.image_height, cfg.image_width]), mindspore.float32) | ||||
| export(network, inputs, file_name="mobilenet_quant.mindir", file_format='MINDIR', quant_mode='AUTO') | |||||
| export(network, inputs, file_name="mobilenet_quant", file_format='MINDIR', quant_mode='AUTO') | |||||
| print("============== End export ==============") | print("============== End export ==============") | ||||
| @@ -34,5 +34,5 @@ config_gpu = ed({ | |||||
| "keep_checkpoint_max": 500, | "keep_checkpoint_max": 500, | ||||
| "save_checkpoint_path": "./checkpoint", | "save_checkpoint_path": "./checkpoint", | ||||
| "export_format": "MINDIR", | "export_format": "MINDIR", | ||||
| "export_file": "mobilenetv3.mindir" | |||||
| "export_file": "mobilenetv3" | |||||
| }) | }) | ||||
| @@ -51,6 +51,6 @@ nasnet_a_mobile_config_gpu = edict({ | |||||
| "loss_scale": 1, | "loss_scale": 1, | ||||
| ### onnx&air Config | ### onnx&air Config | ||||
| 'onnx_filename': 'nasnet_a_mobile.onnx', | |||||
| 'air_filename': 'nasnet_a_mobile.air' | |||||
| 'onnx_filename': 'nasnet_a_mobile', | |||||
| 'air_filename': 'nasnet_a_mobile' | |||||
| }) | }) | ||||
| @@ -41,4 +41,4 @@ if __name__ == '__main__': | |||||
| load_param_into_net(net, param_dict) | load_param_into_net(net, param_dict) | ||||
| inputs = np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]).astype(np.float32) | inputs = np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]).astype(np.float32) | ||||
| export(net, Tensor(inputs), file_name='resnet-42_5004.air', file_format='AIR') | |||||
| export(net, Tensor(inputs), file_name='resnet-42_5004', file_format='AIR') | |||||
| @@ -44,5 +44,5 @@ config = ed({ | |||||
| "rank": 0, | "rank": 0, | ||||
| "group_size": 1, | "group_size": 1, | ||||
| "export_format": "MINDIR", | "export_format": "MINDIR", | ||||
| "export_file": "resnext50.mindir" | |||||
| "export_file": "resnext50" | |||||
| }) | }) | ||||
| @@ -39,8 +39,8 @@ if __name__ == '__main__': | |||||
| else: | else: | ||||
| num_classes = 1000 | num_classes = 1000 | ||||
| onnx_filename = args_opt.net + '_' + args_opt.dataset + '.onnx' | |||||
| air_filename = args_opt.net + '_' + args_opt.dataset + '.air' | |||||
| onnx_filename = args_opt.net + '_' + args_opt.dataset | |||||
| air_filename = args_opt.net + '_' + args_opt.dataset | |||||
| net = squeezenet(num_classes=num_classes) | net = squeezenet(num_classes=num_classes) | ||||
| @@ -26,7 +26,7 @@ parser = argparse.ArgumentParser(description='SSD export') | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | parser.add_argument("--device_id", type=int, default=0, help="Device id") | ||||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | parser.add_argument("--batch_size", type=int, default=1, help="batch size") | ||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | ||||
| parser.add_argument("--file_name", type=str, default="ssd.air", help="output file name.") | |||||
| parser.add_argument("--file_name", type=str, default="ssd", help="output file name.") | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -23,7 +23,7 @@ from src.unet.unet_model import UNet | |||||
| parser = argparse.ArgumentParser(description='Export ckpt to air') | parser = argparse.ArgumentParser(description='Export ckpt to air') | ||||
| parser.add_argument('--ckpt_file', type=str, default="ckpt_unet_medical_adam-1_600.ckpt", | parser.add_argument('--ckpt_file', type=str, default="ckpt_unet_medical_adam-1_600.ckpt", | ||||
| help='The path of input ckpt file') | help='The path of input ckpt file') | ||||
| parser.add_argument('--air_file', type=str, default="unet_medical_adam-1_600.air", help='The path of output air file') | |||||
| parser.add_argument('--air_file', type=str, default="unet_medical_adam-1_600", help='The path of output air file') | |||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| net = UNet(n_channels=1, n_classes=2) | net = UNet(n_channels=1, n_classes=2) | ||||
| @@ -27,7 +27,7 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||||
| parser = argparse.ArgumentParser(description='VGG16 export') | parser = argparse.ArgumentParser(description='VGG16 export') | ||||
| parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10", help='ckpt file') | parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10", help='ckpt file') | ||||
| parser.add_argument('--ckpt_file', type=str, required=True, help='vgg16 ckpt file.') | parser.add_argument('--ckpt_file', type=str, required=True, help='vgg16 ckpt file.') | ||||
| parser.add_argument('--output_file', type=str, default='vgg16.air', help='vgg16 output air name.') | |||||
| parser.add_argument('--output_file', type=str, default='vgg16', help='vgg16 output air name.') | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -26,7 +26,7 @@ parser = argparse.ArgumentParser(description='yolov3_darknet53 export') | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | parser.add_argument("--device_id", type=int, default=0, help="Device id") | ||||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | parser.add_argument("--batch_size", type=int, default=1, help="batch size") | ||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | ||||
| parser.add_argument("--file_name", type=str, default="yolov3_darknet53.air", help="output file name.") | |||||
| parser.add_argument("--file_name", type=str, default="yolov3_darknet53", help="output file name.") | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -27,7 +27,7 @@ parser = argparse.ArgumentParser(description='yolov3_darknet53_quant export') | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | parser.add_argument("--device_id", type=int, default=0, help="Device id") | ||||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | parser.add_argument("--batch_size", type=int, default=1, help="batch size") | ||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | ||||
| parser.add_argument("--file_name", type=str, default="yolov3_darknet53_quant.mindir", help="output file name.") | |||||
| parser.add_argument("--file_name", type=str, default="yolov3_darknet53_quant", help="output file name.") | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='MINDIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='MINDIR', help='file format') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -26,7 +26,7 @@ parser = argparse.ArgumentParser(description='yolov3_resnet18 export') | |||||
| parser.add_argument("--device_id", type=int, default=0, help="Device id") | parser.add_argument("--device_id", type=int, default=0, help="Device id") | ||||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | parser.add_argument("--batch_size", type=int, default=1, help="batch size") | ||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | ||||
| parser.add_argument("--file_name", type=str, default="yolov3_resnet18.air", help="output file name.") | |||||
| parser.add_argument("--file_name", type=str, default="yolov3_resnet18", help="output file name.") | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -26,7 +26,7 @@ parser.add_argument("--device_id", type=int, default=0, help="Device id") | |||||
| parser.add_argument("--batch_size", type=int, default=1, help="batch size") | parser.add_argument("--batch_size", type=int, default=1, help="batch size") | ||||
| parser.add_argument("--testing_shape", type=int, default=608, help="test shape") | parser.add_argument("--testing_shape", type=int, default=608, help="test shape") | ||||
| parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") | ||||
| parser.add_argument("--file_name", type=str, default="yolov4.air", help="output file name.") | |||||
| parser.add_argument("--file_name", type=str, default="yolov4", help="output file name.") | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -34,7 +34,7 @@ parser.add_argument('--downstream_task', type=str, choices=["NER", "CLS", "SQUAD | |||||
| parser.add_argument('--num_class', type=int, default=41, help='The number of class, default is 41.') | parser.add_argument('--num_class', type=int, default=41, help='The number of class, default is 41.') | ||||
| parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.') | parser.add_argument('--label_file_path', type=str, default="", help='label file path, used in clue benchmark.') | ||||
| parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.') | parser.add_argument('--ckpt_file', type=str, required=True, help='Bert ckpt file.') | ||||
| parser.add_argument('--output_file', type=str, default='Bert.air', help='bert output air name.') | |||||
| parser.add_argument('--output_file', type=str, default='Bert', help='bert output air name.') | |||||
| parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -26,7 +26,7 @@ from src.tinybert_model import BertModelCLS | |||||
| parser = argparse.ArgumentParser(description='tinybert task distill') | parser = argparse.ArgumentParser(description='tinybert task distill') | ||||
| parser.add_argument('--ckpt_file', type=str, required=True, help='tinybert ckpt file.') | parser.add_argument('--ckpt_file', type=str, required=True, help='tinybert ckpt file.') | ||||
| parser.add_argument('--output_file', type=str, default='tinybert.air', help='tinybert output air name.') | |||||
| parser.add_argument('--output_file', type=str, default='tinybert', help='tinybert output air name.') | |||||
| parser.add_argument('--task_name', type=str, default='SST-2', choices=['SST-2', 'QNLI', 'MNLI'], help='task name') | parser.add_argument('--task_name', type=str, default='SST-2', choices=['SST-2', 'QNLI', 'MNLI'], help='task name') | ||||
| args = parser.parse_args() | args = parser.parse_args() | ||||
| @@ -56,5 +56,5 @@ if __name__ == '__main__': | |||||
| ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32)) | ids = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.int32)) | ||||
| wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32)) | wts = Tensor(np.ones([widedeep_config.eval_batch_size, widedeep_config.field_size]).astype(np.float32)) | ||||
| input_tensor_list = [ids, wts] | input_tensor_list = [ids, wts] | ||||
| export(net, *input_tensor_list, file_name='wide_and_deep.onnx', file_format="ONNX") | |||||
| export(net, *input_tensor_list, file_name='wide_and_deep.air', file_format="AIR") | |||||
| export(net, *input_tensor_list, file_name='wide_and_deep', file_format="ONNX") | |||||
| export(net, *input_tensor_list, file_name='wide_and_deep', file_format="AIR") | |||||
| @@ -35,7 +35,7 @@ def export_net(): | |||||
| y = np.ones([2, 2]).astype(np.float32) | y = np.ones([2, 2]).astype(np.float32) | ||||
| add = Net() | add = Net() | ||||
| output = add(Tensor(x), Tensor(y)) | output = add(Tensor(x), Tensor(y)) | ||||
| export(add, Tensor(x), Tensor(y), file_name='tensor_add.mindir', file_format='MINDIR') | |||||
| export(add, Tensor(x), Tensor(y), file_name='tensor_add', file_format='MINDIR') | |||||
| print(x) | print(x) | ||||
| print(y) | print(y) | ||||
| print(output.asnumpy()) | print(output.asnumpy()) | ||||
| @@ -147,7 +147,7 @@ def export_lenet(): | |||||
| # export network | # export network | ||||
| inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mstype.float32) | inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mstype.float32) | ||||
| export(network, inputs, file_name="lenet_quant.mindir", file_format='MINDIR', quant_mode='AUTO') | |||||
| export(network, inputs, file_name="lenet_quant", file_format='MINDIR', quant_mode='AUTO') | |||||
| @pytest.mark.level0 | @pytest.mark.level0 | ||||
| @@ -331,7 +331,7 @@ def test_export(): | |||||
| def test_mindir_export(): | def test_mindir_export(): | ||||
| net = MYNET() | net = MYNET() | ||||
| input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) | input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) | ||||
| export(net, input_data, file_name="./me_binary_export.mindir", file_format="MINDIR") | |||||
| export(net, input_data, file_name="./me_binary_export", file_format="MINDIR") | |||||
| class PrintNet(nn.Cell): | class PrintNet(nn.Cell): | ||||