|
|
|
@@ -140,6 +140,7 @@ class AssignAdd(PrimitiveWithInfer): |
|
|
|
Examples: |
|
|
|
>>> class Net(Cell): |
|
|
|
>>> def __init__(self): |
|
|
|
>>> super(Net, self).__init__() |
|
|
|
>>> self.AssignAdd = P.AssignAdd() |
|
|
|
>>> self.inputdata = Parameter(initializer(1, [1], mindspore.int64), name="global_step") |
|
|
|
>>> |
|
|
|
@@ -272,7 +273,7 @@ class ReduceMean(_Reduce): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) |
|
|
|
>>> op = ReduceMean(keep_dims=True) |
|
|
|
>>> op = P.ReduceMean(keep_dims=True) |
|
|
|
>>> output = op(data, 1) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -304,7 +305,7 @@ class ReduceSum(_Reduce): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) |
|
|
|
>>> op = ReduceSum(keep_dims=True) |
|
|
|
>>> op = P.ReduceSum(keep_dims=True) |
|
|
|
>>> output = op(data, 1) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -337,7 +338,7 @@ class ReduceAll(_Reduce): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> data = Tensor(np.array([[True, False], [True, True]])) |
|
|
|
>>> op = ReduceAll(keep_dims=True) |
|
|
|
>>> op = P.ReduceAll(keep_dims=True) |
|
|
|
>>> output = op(data, 1) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -373,7 +374,7 @@ class ReduceMax(_Reduce): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) |
|
|
|
>>> op = ReduceMax(keep_dims=True) |
|
|
|
>>> op = P.ReduceMax(keep_dims=True) |
|
|
|
>>> output = op(data, 1) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -406,7 +407,7 @@ class ReduceMin(_Reduce): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) |
|
|
|
>>> op = ReduceMin(keep_dims=True) |
|
|
|
>>> op = P.ReduceMin(keep_dims=True) |
|
|
|
>>> output = op(data, 1) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -438,7 +439,7 @@ class ReduceProd(_Reduce): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> data = Tensor(np.random.randn(3, 4, 5, 6).astype(np.float32)) |
|
|
|
>>> op = ReduceProd(keep_dims=True) |
|
|
|
>>> op = P.ReduceProd(keep_dims=True) |
|
|
|
>>> output = op(data, 1) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -460,13 +461,13 @@ class CumProd(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> data = Tensor(np.array([a, b, c]).astype(np.float32)) |
|
|
|
>>> op0 = CumProd() |
|
|
|
>>> op0 = P.CumProd() |
|
|
|
>>> output = op0(data, 0) # output=[a, a * b, a * b * c] |
|
|
|
>>> op1 = CumProd(exclusive=True) |
|
|
|
>>> op1 = P.CumProd(exclusive=True) |
|
|
|
>>> output = op1(data, 0) # output=[1, a, a * b] |
|
|
|
>>> op2 = CumProd(reverse=True) |
|
|
|
>>> op2 = P.CumProd(reverse=True) |
|
|
|
>>> output = op2(data, 0) # output=[a * b * c, b * c, c] |
|
|
|
>>> op3 = CumProd(exclusive=True, reverse=True) |
|
|
|
>>> op3 = P.CumProd(exclusive=True, reverse=True) |
|
|
|
>>> output = op3(data, 0) # output=[b * c, c, 1] |
|
|
|
""" |
|
|
|
@prim_attr_register |
|
|
|
@@ -506,7 +507,7 @@ class MatMul(PrimitiveWithInfer): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.ones(shape=[1, 3]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.ones(shape=[3, 4]), mindspore.float32) |
|
|
|
>>> matmul = MatMul() |
|
|
|
>>> matmul = P.MatMul() |
|
|
|
>>> output = matmul(input_x, input_y) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -582,12 +583,12 @@ class BatchMatMul(MatMul): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) |
|
|
|
>>> batmatmul = BatchMatMul() |
|
|
|
>>> batmatmul = P.BatchMatMul() |
|
|
|
>>> output = batmatmul(input_x, input_y) |
|
|
|
>>> |
|
|
|
>>> input_x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) |
|
|
|
>>> batmatmul = BatchMatMul(transpose_a=True) |
|
|
|
>>> batmatmul = P.BatchMatMul(transpose_a=True) |
|
|
|
>>> output = batmatmul(input_x, input_y) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -621,7 +622,7 @@ class CumSum(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input = Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float32)) |
|
|
|
>>> cumsum = CumSum() |
|
|
|
>>> cumsum = P.CumSum() |
|
|
|
>>> output = cumsum(input, 1) |
|
|
|
[[ 3. 7. 13. 23.] |
|
|
|
[ 1. 7. 14. 23.] |
|
|
|
@@ -666,7 +667,7 @@ class AddN(PrimitiveWithInfer): |
|
|
|
>>> class NetAddN(nn.Cell): |
|
|
|
>>> def __init__(self): |
|
|
|
>>> super(NetAddN, self).__init__() |
|
|
|
>>> self.addN = AddN() |
|
|
|
>>> self.addN = P.AddN() |
|
|
|
>>> |
|
|
|
>>> def construct(self, *z): |
|
|
|
>>> return self.addN(z) |
|
|
|
@@ -748,7 +749,7 @@ class Sub(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32) |
|
|
|
>>> sub = Sub() |
|
|
|
>>> sub = P.Sub() |
|
|
|
>>> sub(input_x, input_y) |
|
|
|
[-3, -3, -3] |
|
|
|
""" |
|
|
|
@@ -775,7 +776,7 @@ class Mul(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([4, 5, 6]), mindspore.int32) |
|
|
|
>>> mul = Mul() |
|
|
|
>>> mul = P.Mul() |
|
|
|
>>> mul(input_x, input_y) |
|
|
|
[4, 10, 18] |
|
|
|
""" |
|
|
|
@@ -793,7 +794,7 @@ class Square(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) |
|
|
|
>>> square = Square() |
|
|
|
>>> square = P.Square() |
|
|
|
>>> square(input_x) |
|
|
|
[1.0, 4.0, 9.0] |
|
|
|
""" |
|
|
|
@@ -823,7 +824,7 @@ class Rsqrt(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_tensor = Tensor([[4, 4], [9, 9]], mindspore.float32) |
|
|
|
>>> rsqrt = Rsqrt() |
|
|
|
>>> rsqrt = P.Rsqrt() |
|
|
|
>>> rsqrt(input_tensor) |
|
|
|
[[0.5, 0.5], [0.333333, 0.333333]] |
|
|
|
""" |
|
|
|
@@ -853,7 +854,7 @@ class Sqrt(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 4.0, 9.0]), mindspore.float32) |
|
|
|
>>> sqrt = Sqrt() |
|
|
|
>>> sqrt = P.Sqrt() |
|
|
|
>>> sqrt(input_x) |
|
|
|
[1.0, 2.0, 3.0] |
|
|
|
""" |
|
|
|
@@ -883,7 +884,7 @@ class Reciprocal(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) |
|
|
|
>>> reciprocal = Reciprocal() |
|
|
|
>>> reciprocal = P.Reciprocal() |
|
|
|
>>> reciprocal(input_x) |
|
|
|
[1.0, 0.5, 0.25] |
|
|
|
""" |
|
|
|
@@ -916,13 +917,13 @@ class Pow(PrimitiveWithInfer): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) |
|
|
|
>>> input_y = 3.0 |
|
|
|
>>> pow = Pow() |
|
|
|
>>> pow = P.Pow() |
|
|
|
>>> pow(input_x, input_y) |
|
|
|
[1.0, 8.0, 64.0] |
|
|
|
>>> |
|
|
|
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.array([2.0, 4.0, 3.0]), mindspore.float32) |
|
|
|
>>> pow = Pow() |
|
|
|
>>> pow = P.Pow() |
|
|
|
>>> pow(input_x, input_y) |
|
|
|
[1.0, 16.0, 64.0] |
|
|
|
""" |
|
|
|
@@ -952,7 +953,7 @@ class Exp(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) |
|
|
|
>>> exp = Exp() |
|
|
|
>>> exp = P.Exp() |
|
|
|
>>> exp(input_x) |
|
|
|
[ 2.71828183, 7.3890561 , 54.59815003] |
|
|
|
""" |
|
|
|
@@ -982,7 +983,7 @@ class Log(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32) |
|
|
|
>>> log = Log() |
|
|
|
>>> log = P.Log() |
|
|
|
>>> log(input_x) |
|
|
|
[0.0, 0.69314718, 1.38629436] |
|
|
|
""" |
|
|
|
@@ -1020,7 +1021,7 @@ class Minimum(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) |
|
|
|
>>> minimum = Minimum() |
|
|
|
>>> minimum = P.Minimum() |
|
|
|
>>> minimum(input_x, input_y) |
|
|
|
[1.0, 2.0, 3.0] |
|
|
|
""" |
|
|
|
@@ -1047,7 +1048,7 @@ class Maximum(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32) |
|
|
|
>>> maximum = Maximum() |
|
|
|
>>> maximum = P.Maximum() |
|
|
|
>>> maximum(input_x, input_y) |
|
|
|
[4.0, 5.0, 6.0] |
|
|
|
""" |
|
|
|
@@ -1074,7 +1075,7 @@ class RealDiv(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.array([4.0, 5.0, 6.0]), mindspore.float32) |
|
|
|
>>> realdiv = RealDiv() |
|
|
|
>>> realdiv = P.RealDiv() |
|
|
|
>>> realdiv(input_x, input_y) |
|
|
|
[0.25, 0.4, 0.5] |
|
|
|
""" |
|
|
|
@@ -1113,9 +1114,8 @@ class Div(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([-4.0, 5.0, 6.0]), mindspore.float32) |
|
|
|
>>> input_y = Tensor(np.array([3.0, 2.0, 3.0]), mindspore.float32) |
|
|
|
>>> div = Div() |
|
|
|
>>> div = P.Div() |
|
|
|
>>> div(input_x, input_y) |
|
|
|
[-2.0, 2.0, 2.0] |
|
|
|
""" |
|
|
|
|
|
|
|
def infer_value(self, x, y): |
|
|
|
@@ -1147,7 +1147,7 @@ class FloorDiv(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([2, 4, -1]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([3, 3, 3]), mindspore.int32) |
|
|
|
>>> floor_div = FloorDiv() |
|
|
|
>>> floor_div = P.FloorDiv() |
|
|
|
>>> floor_div(input_x, input_y) |
|
|
|
[0, 1, -1] |
|
|
|
""" |
|
|
|
@@ -1165,7 +1165,7 @@ class Floor(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1.1, 2.5, -1.5]), mindspore.float32) |
|
|
|
>>> floor = Floor() |
|
|
|
>>> floor = P.Floor() |
|
|
|
>>> floor(input_x) |
|
|
|
[1.0, 2.0, -2.0] |
|
|
|
""" |
|
|
|
@@ -1221,13 +1221,13 @@ class Equal(_LogicBinaryOp): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) |
|
|
|
>>> equal = Equal() |
|
|
|
>>> equal = P.Equal() |
|
|
|
>>> equal(input_x, 2.0) |
|
|
|
[False, True, False] |
|
|
|
>>> |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) |
|
|
|
>>> equal = Equal() |
|
|
|
>>> equal = P.Equal() |
|
|
|
>>> equal(input_x, input_y) |
|
|
|
[True, True, False] |
|
|
|
""" |
|
|
|
@@ -1252,7 +1252,7 @@ class EqualCount(PrimitiveWithInfer): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) |
|
|
|
>>> equal_count = EqualCount() |
|
|
|
>>> equal_count = P.EqualCount() |
|
|
|
>>> equal_count(input_x, input_y) |
|
|
|
[2] |
|
|
|
""" |
|
|
|
@@ -1292,13 +1292,13 @@ class NotEqual(_LogicBinaryOp): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float32) |
|
|
|
>>> not_equal = NotEqual() |
|
|
|
>>> not_equal = P.NotEqual() |
|
|
|
>>> not_equal(input_x, 2.0) |
|
|
|
[True, False, True] |
|
|
|
>>> |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([1, 2, 4]), mindspore.int32) |
|
|
|
>>> not_equal = NotEqual() |
|
|
|
>>> not_equal = P.NotEqual() |
|
|
|
>>> not_equal(input_x, input_y) |
|
|
|
[False, False, True] |
|
|
|
""" |
|
|
|
@@ -1328,7 +1328,7 @@ class Greater(_LogicBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) |
|
|
|
>>> greater = Greater() |
|
|
|
>>> greater = P.Greater() |
|
|
|
>>> greater(input_x, input_y) |
|
|
|
[False, True, False] |
|
|
|
""" |
|
|
|
@@ -1355,7 +1355,7 @@ class GreaterEqual(_LogicBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) |
|
|
|
>>> greater_equal = GreaterEqual() |
|
|
|
>>> greater_equal = P.GreaterEqual() |
|
|
|
>>> greater_equal(input_x, input_y) |
|
|
|
[True, True, False] |
|
|
|
""" |
|
|
|
@@ -1382,7 +1382,7 @@ class Less(_LogicBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) |
|
|
|
>>> less = Less() |
|
|
|
>>> less = P.Less() |
|
|
|
>>> less(input_x, input_y) |
|
|
|
[False, False, True] |
|
|
|
""" |
|
|
|
@@ -1409,7 +1409,7 @@ class LessEqual(_LogicBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.int32) |
|
|
|
>>> input_y = Tensor(np.array([1, 1, 4]), mindspore.int32) |
|
|
|
>>> less_equal = LessEqual() |
|
|
|
>>> less_equal = P.LessEqual() |
|
|
|
>>> less_equal(input_x, input_y) |
|
|
|
[True, False, True] |
|
|
|
""" |
|
|
|
@@ -1427,7 +1427,7 @@ class LogicalNot(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) |
|
|
|
>>> logical_not = LogicalNot() |
|
|
|
>>> logical_not = P.LogicalNot() |
|
|
|
>>> logical_not(input_x) |
|
|
|
[False, True, False] |
|
|
|
""" |
|
|
|
@@ -1465,7 +1465,7 @@ class LogicalAnd(_LogicBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) |
|
|
|
>>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) |
|
|
|
>>> logical_and = LogicalAnd() |
|
|
|
>>> logical_and = P.LogicalAnd() |
|
|
|
>>> logical_and(input_x, input_y) |
|
|
|
[True, False, False] |
|
|
|
""" |
|
|
|
@@ -1494,7 +1494,7 @@ class LogicalOr(_LogicBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([True, False, True]), mindspore.bool_) |
|
|
|
>>> input_y = Tensor(np.array([True, True, False]), mindspore.bool_) |
|
|
|
>>> logical_or = LogicalOr() |
|
|
|
>>> logical_or = P.LogicalOr() |
|
|
|
>>> logical_or(input_x, input_y) |
|
|
|
[True, True, True] |
|
|
|
""" |
|
|
|
@@ -1516,7 +1516,7 @@ class NPUAllocFloatStatus(PrimitiveWithInfer): |
|
|
|
Tensor, has the shape of `(8,)`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> alloc_status = NPUAllocFloatStatus() |
|
|
|
>>> alloc_status = P.NPUAllocFloatStatus() |
|
|
|
>>> init = alloc_status() |
|
|
|
Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32) |
|
|
|
""" |
|
|
|
@@ -1548,8 +1548,8 @@ class NPUGetFloatStatus(PrimitiveWithInfer): |
|
|
|
Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> alloc_status = NPUAllocFloatStatus() |
|
|
|
>>> get_status = NPUGetFloatStatus() |
|
|
|
>>> alloc_status = P.NPUAllocFloatStatus() |
|
|
|
>>> get_status = P.NPUGetFloatStatus() |
|
|
|
>>> init = alloc_status() |
|
|
|
>>> flag = get_status(init) |
|
|
|
Tensor([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], shape=(8,), dtype=mindspore.float32) |
|
|
|
@@ -1588,9 +1588,9 @@ class NPUClearFloatStatus(PrimitiveWithInfer): |
|
|
|
Tensor, has the same shape as `input_x`. All the elements in the tensor will be zero. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> alloc_status = NPUAllocFloatStatus() |
|
|
|
>>> get_status = NPUGetFloatStatus() |
|
|
|
>>> clear_status = NPUClearFloatStatus() |
|
|
|
>>> alloc_status = P.NPUAllocFloatStatus() |
|
|
|
>>> get_status = P.NPUGetFloatStatus() |
|
|
|
>>> clear_status = P.NPUClearFloatStatus() |
|
|
|
>>> init = alloc_status() |
|
|
|
>>> flag = get_status(init) |
|
|
|
>>> clear = clear_status(init) |
|
|
|
@@ -1624,7 +1624,7 @@ class Cos(PrimitiveWithInfer): |
|
|
|
Tensor, has the same shape as `input_x`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> cos = Cos() |
|
|
|
>>> cos = P.Cos() |
|
|
|
>>> X = Tensor(np.array([0.24, 0.83, 0.31, 0.09]), ms.float32) |
|
|
|
>>> output = cos(X) |
|
|
|
""" |
|
|
|
@@ -1653,8 +1653,8 @@ class ACos(PrimitiveWithInfer): |
|
|
|
Tensor, has the same shape as `input_x`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> acos = ACos() |
|
|
|
>>> X = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), ms.float32) |
|
|
|
>>> acos = P.ACos() |
|
|
|
>>> X = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32) |
|
|
|
>>> output = acos(X) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -1682,9 +1682,9 @@ class Sin(PrimitiveWithInfer): |
|
|
|
Tensor, has the same shape as `input_x`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> sin = Sin() |
|
|
|
>>> X = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), ms.float32) |
|
|
|
>>> output = sin(X) |
|
|
|
>>> sin = P.Sin() |
|
|
|
>>> input_x = Tensor(np.array([0.62, 0.28, 0.43, 0.62]), ms.float32) |
|
|
|
>>> output = sin(input_x) |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
@@ -1734,7 +1734,7 @@ class NMSWithMask(PrimitiveWithInfer): |
|
|
|
>>> bbox[:, 2] += bbox[:, 0] |
|
|
|
>>> bbox[:, 3] += bbox[:, 1] |
|
|
|
>>> inputs = Tensor(bbox) |
|
|
|
>>> nms = NMSWithMask(0.5) |
|
|
|
>>> nms = P.NMSWithMask(0.5) |
|
|
|
>>> output_boxes, indices, mask = nms(inputs) |
|
|
|
""" |
|
|
|
|
|
|
|
@@ -1769,7 +1769,7 @@ class Abs(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([-1.0, 1.0, 0.0]), mindspore.float32) |
|
|
|
>>> abs = Abs() |
|
|
|
>>> abs = P.Abs() |
|
|
|
>>> abs(input_x) |
|
|
|
[1.0, 1.0, 0.0] |
|
|
|
""" |
|
|
|
@@ -1812,7 +1812,7 @@ class Sign(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([[2.0, 0.0, -1.0]]), mindspore.float32) |
|
|
|
>>> sign = Sign() |
|
|
|
>>> sign = P.Sign() |
|
|
|
>>> output = sign(input_x) |
|
|
|
[[1.0, 0.0, -1.0]] |
|
|
|
""" |
|
|
|
@@ -1842,7 +1842,7 @@ class Round(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([0.8, 1.5, 2.3, 2.5, -4.5]), mindspore.float32) |
|
|
|
>>> round = Round() |
|
|
|
>>> round = P.Round() |
|
|
|
>>> round(input_x) |
|
|
|
[1.0, 2.0, 2.0, 2.0, -4.0] |
|
|
|
""" |
|
|
|
@@ -1877,7 +1877,7 @@ class Atan2(_MathBinaryOp): |
|
|
|
Examples: |
|
|
|
>>> input_x = Tensor(np.array([[0, 1]]), mstype.float32) |
|
|
|
>>> input_y = Tensor(np.array([[1, 1]]), mstype.float32) |
|
|
|
>>> atan2 = Atan2() |
|
|
|
>>> atan2 = P.Atan2() |
|
|
|
>>> atan2(input_x, input_y) |
|
|
|
[[0. 0.7853982]] |
|
|
|
""" |