| @@ -0,0 +1,186 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import os | |||
| import shutil | |||
| import pytest | |||
| from mindspore import dataset as ds | |||
| from mindspore import nn, Tensor, context | |||
| from mindspore.nn.metrics import Accuracy | |||
| from mindspore.nn.optim import Momentum | |||
| from mindspore.dataset.transforms import c_transforms as C | |||
| from mindspore.dataset.vision import c_transforms as CV | |||
| from mindspore.dataset.vision import Inter | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.common.initializer import TruncatedNormal | |||
| from mindspore.train import Model | |||
| from mindspore.profiler import Profiler | |||
| def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): | |||
| """weight initial for conv layer""" | |||
| weight = weight_variable() | |||
| return nn.Conv2d(in_channels, out_channels, | |||
| kernel_size=kernel_size, stride=stride, padding=padding, | |||
| weight_init=weight, has_bias=False, pad_mode="valid") | |||
| def fc_with_initialize(input_channels, out_channels): | |||
| """weight initial for fc layer""" | |||
| weight = weight_variable() | |||
| bias = weight_variable() | |||
| return nn.Dense(input_channels, out_channels, weight, bias) | |||
| def weight_variable(): | |||
| """weight initial""" | |||
| return TruncatedNormal(0.02) | |||
| class LeNet5(nn.Cell): | |||
| """Define LeNet5 network.""" | |||
| def __init__(self, num_class=10, channel=1): | |||
| super(LeNet5, self).__init__() | |||
| self.num_class = num_class | |||
| self.conv1 = conv(channel, 6, 5) | |||
| self.conv2 = conv(6, 16, 5) | |||
| self.fc1 = fc_with_initialize(16 * 5 * 5, 120) | |||
| self.fc2 = fc_with_initialize(120, 84) | |||
| self.fc3 = fc_with_initialize(84, self.num_class) | |||
| self.relu = nn.ReLU() | |||
| self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) | |||
| self.flatten = nn.Flatten() | |||
| self.channel = Tensor(channel) | |||
| def construct(self, data): | |||
| """define construct.""" | |||
| output = self.conv1(data) | |||
| output = self.relu(output) | |||
| output = self.max_pool2d(output) | |||
| output = self.conv2(output) | |||
| output = self.relu(output) | |||
| output = self.max_pool2d(output) | |||
| output = self.flatten(output) | |||
| output = self.fc1(output) | |||
| output = self.relu(output) | |||
| output = self.fc2(output) | |||
| output = self.relu(output) | |||
| output = self.fc3(output) | |||
| return output | |||
| def create_dataset(data_path, batch_size=32, repeat_size=1, num_parallel_workers=1): | |||
| """create dataset for train""" | |||
| # define dataset | |||
| mnist_ds = ds.MnistDataset(data_path, num_samples=batch_size*100) | |||
| resize_height, resize_width = 32, 32 | |||
| rescale = 1.0 / 255.0 | |||
| rescale_nml = 1 / 0.3081 | |||
| shift_nml = -1 * 0.1307 / 0.3081 | |||
| # define map operations | |||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||
| rescale_op = CV.Rescale(rescale, shift=0.0) | |||
| hwc2chw_op = CV.HWC2CHW() | |||
| type_cast_op = C.TypeCast(mstype.int32) | |||
| # apply map operations on images | |||
| mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||
| mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||
| # apply DatasetOps | |||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||
| return mnist_ds | |||
| def cleanup(): | |||
| data_path = os.path.join(os.getcwd(), "data") | |||
| kernel_meta_path = os.path.join(os.getcwd(), "kernel_data") | |||
| cache_path = os.path.join(os.getcwd(), "__pycache__") | |||
| if os.path.exists(data_path): | |||
| shutil.rmtree(data_path) | |||
| if os.path.exists(kernel_meta_path): | |||
| shutil.rmtree(kernel_meta_path) | |||
| if os.path.exists(cache_path): | |||
| shutil.rmtree(cache_path) | |||
| class TestProfiler: | |||
| device_id = int(os.getenv('DEVICE_ID')) if os.getenv('DEVICE_ID') else 0 | |||
| mnist_path = '/home/workspace/mindspore_dataset/mnist' | |||
| profiler_path = os.path.join(os.getcwd(), 'data/profiler/') | |||
| @classmethod | |||
| def teardown_class(cls): | |||
| """ Run after class end.""" | |||
| cleanup() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gpu_profiler(self): | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| profiler = Profiler() | |||
| ds_train = create_dataset(os.path.join(self.mnist_path, "train")) | |||
| if ds_train.get_dataset_size() == 0: | |||
| raise ValueError("Please check dataset size > 0 and batch_size <= dataset size") | |||
| lenet = LeNet5() | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") | |||
| optim = Momentum(lenet.trainable_params(), learning_rate=0.1, momentum=0.9) | |||
| model = Model(lenet, loss_fn=loss, optimizer=optim, metrics={'acc': Accuracy()}) | |||
| model.train(1, ds_train, dataset_sink_mode=True) | |||
| profiler.analyse() | |||
| self._check_gpu_profiling_file() | |||
| def _check_gpu_profiling_file(self): | |||
| op_detail_file = self.profiler_path + f'gpu_op_detail_info_{self.device_id}.csv' | |||
| op_type_file = self.profiler_path + f'gpu_op_type_info_{self.device_id}.csv' | |||
| activity_file = self.profiler_path + f'gpu_activity_data_{self.device_id}.csv' | |||
| timeline_file = self.profiler_path + f'gpu_timeline_display_{self.device_id}.json' | |||
| getnext_file = self.profiler_path + f'minddata_getnext_profiling_{self.device_id}.txt' | |||
| pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv' | |||
| assert os.path.exists(op_detail_file) | |||
| assert os.path.exists(op_type_file) | |||
| assert os.path.exists(activity_file) | |||
| assert os.path.exists(timeline_file) | |||
| assert os.path.exists(getnext_file) | |||
| assert os.path.exists(pipeline_file) | |||
| def _check_d_profiling_file(self): | |||
| aicore_file = self.profiler_path + f'aicore_intermediate_{self.device_id}_detail.csv' | |||
| step_trace_file = self.profiler_path + f'step_trace_raw_{self.device_id}_detail_time.csv' | |||
| timeline_file = self.profiler_path + f'ascend_timeline_display_{self.device_id}.json' | |||
| aicpu_file = self.profiler_path + f'aicpu_intermediate_{self.device_id}.csv' | |||
| minddata_pipeline_file = self.profiler_path + f'minddata_pipeline_raw_{self.device_id}.csv' | |||
| queue_profiling_file = self.profiler_path + f'device_queue_profiling_{self.device_id}.txt' | |||
| assert os.path.exists(aicore_file) | |||
| assert os.path.exists(step_trace_file) | |||
| assert os.path.exists(timeline_file) | |||
| assert os.path.exists(queue_profiling_file) | |||
| assert os.path.exists(minddata_pipeline_file) | |||
| assert os.path.exists(aicpu_file) | |||