| @@ -0,0 +1,87 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/gpu/cuda_impl/ftrl_impl.cuh" | |||
| template <typename T> | |||
| __device__ __forceinline__ T PowFunc(T x, T y) { | |||
| return pow(x, y); | |||
| } | |||
| template <> | |||
| __device__ __forceinline__ half PowFunc(half x, half y) { | |||
| return __float2half(pow(__half2float(x), __half2float(y))); | |||
| } | |||
| template <typename T> | |||
| __device__ __forceinline__ bool CompareFunc(T x, T y) { | |||
| return abs(x) > y; | |||
| } | |||
| template <> | |||
| __device__ __forceinline__ bool CompareFunc(half x, half y) { | |||
| return abs(__half2float(x)) > __half2float(y); | |||
| } | |||
| template <typename T> | |||
| __device__ __forceinline__ T Sgn(T x) { | |||
| return static_cast<T>(x != 0 ? (x > 0 ? 1 : -1) : 0); | |||
| } | |||
| template <> | |||
| __device__ __forceinline__ half Sgn(half x) { | |||
| return __float2half(__half2float(x) != 0 ? (__half2float(x) > 0 ? 1 : -1) : 0); | |||
| } | |||
| template <typename T> | |||
| __global__ void ApplyFtrlKernel(const size_t size, const T *gradient, const T *learning_rate, | |||
| const T *l1_regularization, const T *l2_regularization, const T *learning_rate_power, | |||
| T *variable, T *accumulation, T *linear) { | |||
| const T two = static_cast<T>(2.0); | |||
| const T learning_rate_power_val = -learning_rate_power[0]; | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) { | |||
| const T cur_accumulation = accumulation[i] + gradient[i] * gradient[i]; | |||
| const T accumulation_power = PowFunc(accumulation[i], learning_rate_power_val); | |||
| const T cur_accumulation_power = PowFunc(cur_accumulation, learning_rate_power_val); | |||
| const T sigma = (cur_accumulation_power - accumulation_power) / learning_rate[0]; | |||
| linear[i] += gradient[i] - sigma * variable[i]; | |||
| variable[i] = CompareFunc(linear[i], l1_regularization[0]) | |||
| ? ((l1_regularization[0] * Sgn(linear[i]) - linear[i]) / | |||
| (cur_accumulation_power / learning_rate[0] + two * l2_regularization[0])) | |||
| : static_cast<T>(0); | |||
| accumulation[i] = cur_accumulation; | |||
| } | |||
| } | |||
| template <typename T> | |||
| void ApplyFtrl(const size_t size, const T *gradient, const T *learning_rate, const T *l1_regularization, | |||
| const T *l2_regularization, const T *learning_rate_power, T *variable, T *accumulation, T *linear, | |||
| cudaStream_t cuda_stream) { | |||
| ApplyFtrlKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, gradient, learning_rate, l1_regularization, | |||
| l2_regularization, learning_rate_power, variable, | |||
| accumulation, linear); | |||
| } | |||
| template void ApplyFtrl<float>(const size_t size, const float *gradient, const float *learning_rate, | |||
| const float *l1_regularization, const float *l2_regularization, | |||
| const float *learning_rate_power, float *variable, float *accumulation, float *linear, | |||
| cudaStream_t cuda_stream); | |||
| template void ApplyFtrl<half>(const size_t size, const half *gradient, const half *learning_rate, | |||
| const half *l1_regularization, const half *l2_regularization, | |||
| const half *learning_rate_power, half *variable, half *accumulation, half *linear, | |||
| cudaStream_t cuda_stream); | |||
| @@ -0,0 +1,26 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_FTRL_IMPL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_FTRL_IMPL_H_ | |||
| #include "device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| void ApplyFtrl(const size_t size, const T *gradient, const T *learning_rate, const T *l1_regularization, | |||
| const T *l2_regularization, const T *learning_rate_power, T *variable, T *accumulation, T *linear, | |||
| cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_FTRL_IMPL_H_ | |||
| @@ -0,0 +1,46 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/gpu/nn/ftrl_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE(ApplyFtrl, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| FtrlGpuKernel, float) | |||
| MS_REG_GPU_KERNEL_ONE(ApplyFtrl, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| FtrlGpuKernel, half) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,130 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_FTRL_GPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_NN_FTRL_GPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include "kernel/gpu/gpu_kernel.h" | |||
| #include "kernel/gpu/gpu_kernel_factory.h" | |||
| #include "kernel/gpu/cuda_impl/ftrl_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class FtrlGpuKernel : public GpuKernel { | |||
| public: | |||
| FtrlGpuKernel() | |||
| : variable_size_(0), | |||
| accumulation_size_(0), | |||
| linear_size_(0), | |||
| gradient_size_(0), | |||
| learning_rate_size_(0), | |||
| l1_regularization_size_(0), | |||
| l2_regularization_size_(0), | |||
| learning_rate_power_size_(0) {} | |||
| ~FtrlGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &, | |||
| void *stream_ptr) override { | |||
| T *variable = GetDeviceAddress<T>(inputs, 0); | |||
| T *accumulation = GetDeviceAddress<T>(inputs, 1); | |||
| T *linear = GetDeviceAddress<T>(inputs, 2); | |||
| T *gradient = GetDeviceAddress<T>(inputs, 3); | |||
| T *learning_rate = GetDeviceAddress<T>(inputs, 4); | |||
| T *l1_regularization = GetDeviceAddress<T>(inputs, 5); | |||
| T *l2_regularization = GetDeviceAddress<T>(inputs, 6); | |||
| T *learning_rate_power = GetDeviceAddress<T>(inputs, 7); | |||
| ApplyFtrl(inputs[0]->size / sizeof(T), gradient, learning_rate, l1_regularization, l2_regularization, | |||
| learning_rate_power, variable, accumulation, linear, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 8) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but ftrl needs 8 inputs."; | |||
| return false; | |||
| } | |||
| variable_size_ = sizeof(T); | |||
| accumulation_size_ = sizeof(T); | |||
| linear_size_ = sizeof(T); | |||
| gradient_size_ = sizeof(T); | |||
| learning_rate_size_ = sizeof(T); | |||
| l1_regularization_size_ = sizeof(T); | |||
| l2_regularization_size_ = sizeof(T); | |||
| learning_rate_power_size_ = sizeof(T); | |||
| auto variable_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < variable_shape.size(); i++) { | |||
| variable_size_ *= variable_shape[i]; | |||
| } | |||
| auto accumulation_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| for (size_t i = 0; i < accumulation_shape.size(); i++) { | |||
| accumulation_size_ *= accumulation_shape[i]; | |||
| } | |||
| auto linear_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2); | |||
| for (size_t i = 0; i < linear_shape.size(); i++) { | |||
| linear_size_ *= linear_shape[i]; | |||
| } | |||
| auto gradient_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3); | |||
| for (size_t i = 0; i < gradient_shape.size(); i++) { | |||
| gradient_size_ *= gradient_shape[i]; | |||
| } | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(variable_size_); | |||
| input_size_list_.push_back(accumulation_size_); | |||
| input_size_list_.push_back(linear_size_); | |||
| input_size_list_.push_back(gradient_size_); | |||
| input_size_list_.push_back(learning_rate_size_); | |||
| input_size_list_.push_back(l1_regularization_size_); | |||
| input_size_list_.push_back(l2_regularization_size_); | |||
| input_size_list_.push_back(learning_rate_power_size_); | |||
| output_size_list_.push_back(0); | |||
| } | |||
| private: | |||
| size_t variable_size_; | |||
| size_t accumulation_size_; | |||
| size_t linear_size_; | |||
| size_t gradient_size_; | |||
| size_t learning_rate_size_; | |||
| size_t l1_regularization_size_; | |||
| size_t l2_regularization_size_; | |||
| size_t learning_rate_power_size_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_FTRL_GPU_KERNEL_H_ | |||
| @@ -0,0 +1,78 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.nn import Dense | |||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||
| from mindspore.nn.optim import FTRL | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| class NetFtrl(nn.Cell): | |||
| def __init__(self): | |||
| super(NetFtrl, self).__init__() | |||
| self.batch_size = 1 | |||
| self.reshape = P.Reshape() | |||
| weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01) | |||
| self.fc1 = Dense(16, 10, weight_init=weight) | |||
| def construct(self, input_x): | |||
| output = self.reshape(input_x, (self.batch_size, -1)) | |||
| output = self.fc1(output) | |||
| return output | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_ftrl(): | |||
| epoch = 3 | |||
| net = NetFtrl() | |||
| optimizer = FTRL(filter(lambda x: x.requires_grad, | |||
| net.get_parameters()), learning_rate=0.01) | |||
| criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||
| net_with_criterion = WithLossCell(net, criterion) | |||
| train_network = TrainOneStepCell( | |||
| net_with_criterion, optimizer) | |||
| train_network.set_train() | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| losses1 = [] | |||
| for _ in range(epoch): | |||
| data = Tensor(np.arange(0, 16).reshape( | |||
| 1, 1, 4, 4).astype(np.float32) * 0.01) | |||
| label = Tensor(np.array([0]).astype(np.int32)) | |||
| loss = train_network(data, label) | |||
| losses1.append(loss.asnumpy()) | |||
| assert losses1[0] > losses1[1] | |||
| assert losses1[1] > losses1[2] | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") | |||
| losses2 = [] | |||
| for _ in range(epoch): | |||
| data = Tensor(np.arange(0, 16).reshape( | |||
| 1, 1, 4, 4).astype(np.float32) * 0.01) | |||
| label = Tensor(np.array([0]).astype(np.int32)) | |||
| loss = train_network(data, label) | |||
| losses2.append(loss.asnumpy()) | |||
| assert losses2[0] > losses2[1] | |||
| assert losses2[1] > losses2[2] | |||