| @@ -4,16 +4,16 @@ | |||
| - [Model Architecture](#model-architecture) | |||
| - [Dataset](#dataset) | |||
| - [Environment Requirements](#environment-requirements) | |||
| - [Quick Start](#quick-start) | |||
| - [Quick Start](#quick-start) | |||
| - [Script Description](#script-description) | |||
| - [Script and Sample Code](#script-and-sample-code) | |||
| - [Script Parameters](#script-parameters) | |||
| - [Training Process](#training-process) | |||
| - [Training](#training) | |||
| - [Training](#training) | |||
| - [Evaluation Process](#evaluation-process) | |||
| - [Evaluation](#evaluation) | |||
| - [Model Description](#model-description) | |||
| - [Performance](#performance) | |||
| - [Performance](#performance) | |||
| - [Evaluation Performance](#evaluation-performance) | |||
| - [ModelZoo Homepage](#modelzoo-homepage) | |||
| @@ -26,15 +26,15 @@ AlexNet was proposed in 2012, one of the most influential neural networks. It go | |||
| # [Model Architecture](#contents) | |||
| AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification. | |||
| AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification. | |||
| # [Dataset](#contents) | |||
| Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>) | |||
| Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>) | |||
| - Dataset size:175M,60,000 32*32 colorful images in 10 classes | |||
| - Train:146M,50,000 images | |||
| - Test:29.3M,10,000 images | |||
| - Train:146M,50,000 images | |||
| - Test:29.3M,10,000 images | |||
| - Data format:binary files | |||
| - Note:Data will be processed in dataset.py | |||
| - Download the dataset, the directory structure is as follows: | |||
| @@ -48,20 +48,20 @@ Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>) | |||
| # [Environment Requirements](#contents) | |||
| - Hardware(Ascend/GPU) | |||
| - Prepare hardware environment with Ascend or GPU processor. | |||
| - Prepare hardware environment with Ascend or GPU processor. | |||
| - Framework | |||
| - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/) | |||
| - For more information, please check the resources below: | |||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) | |||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html) | |||
| - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html) | |||
| # [Quick Start](#contents) | |||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | |||
| After installing MindSpore via the official website, you can start training and evaluation as follows: | |||
| ```python | |||
| # enter script dir, train AlexNet | |||
| sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH] | |||
| sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH] | |||
| # enter script dir, evaluate AlexNet | |||
| sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME] | |||
| ``` | |||
| @@ -72,20 +72,20 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME] | |||
| ``` | |||
| ├── cv | |||
| ├── alexnet | |||
| ├── alexnet | |||
| ├── README.md // descriptions about alexnet | |||
| ├── requirements.txt // package needed | |||
| ├── scripts | |||
| │ ├──run_standalone_train_gpu.sh // train in gpu | |||
| │ ├──run_standalone_train_ascend.sh // train in ascend | |||
| │ ├──run_standalone_eval_gpu.sh // evaluate in gpu | |||
| │ ├──run_standalone_eval_ascend.sh // evaluate in ascend | |||
| ├── src | |||
| ├── scripts | |||
| │ ├──run_standalone_train_gpu.sh // train in gpu | |||
| │ ├──run_standalone_train_ascend.sh // train in ascend | |||
| │ ├──run_standalone_eval_gpu.sh // evaluate in gpu | |||
| │ ├──run_standalone_eval_ascend.sh // evaluate in ascend | |||
| ├── src | |||
| │ ├──dataset.py // creating dataset | |||
| │ ├──alexnet.py // alexnet architecture | |||
| │ ├──config.py // parameter configuration | |||
| ├── train.py // training script | |||
| ├── eval.py // evaluation script | |||
| │ ├──config.py // parameter configuration | |||
| ├── train.py // training script | |||
| ├── eval.py // evaluation script | |||
| ``` | |||
| ## [Script Parameters](#contents) | |||
| @@ -93,39 +93,61 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME] | |||
| ```python | |||
| Major parameters in train.py and config.py as follows: | |||
| --data_path: The absolute full path to the train and evaluation datasets. | |||
| --epoch_size: Total training epochs. | |||
| --batch_size: Training batch size. | |||
| --data_path: The absolute full path to the train and evaluation datasets. | |||
| --epoch_size: Total training epochs. | |||
| --batch_size: Training batch size. | |||
| --image_height: Image height used as input to the model. | |||
| --image_width: Image width used as input the model. | |||
| --device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU". | |||
| --image_width: Image width used as input the model. | |||
| --device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU". | |||
| --checkpoint_path: The absolute full path to the checkpoint file saved after training. | |||
| --data_path: Path where the dataset is saved | |||
| --data_path: Path where the dataset is saved | |||
| ``` | |||
| ## [Training Process](#contents) | |||
| ### Training | |||
| ### Training | |||
| ``` | |||
| python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 & | |||
| # or enter script dir, and run the script | |||
| sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt | |||
| ``` | |||
| - running on Ascend | |||
| After training, the loss value will be achieved as follows: | |||
| ``` | |||
| python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 & | |||
| # or enter script dir, and run the script | |||
| sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt | |||
| ``` | |||
| ``` | |||
| # grep "loss is " train.log | |||
| epoch: 1 step: 1, loss is 2.2791853 | |||
| ... | |||
| epoch: 1 step: 1536, loss is 1.9366643 | |||
| epoch: 1 step: 1537, loss is 1.6983616 | |||
| epoch: 1 step: 1538, loss is 1.0221305 | |||
| ... | |||
| ``` | |||
| After training, the loss value will be achieved as follows: | |||
| ``` | |||
| # grep "loss is " train.log | |||
| epoch: 1 step: 1, loss is 2.2791853 | |||
| ... | |||
| epoch: 1 step: 1536, loss is 1.9366643 | |||
| epoch: 1 step: 1537, loss is 1.6983616 | |||
| epoch: 1 step: 1538, loss is 1.0221305 | |||
| ... | |||
| ``` | |||
| The model checkpoint will be saved in the current directory. | |||
| - running on GPU | |||
| ``` | |||
| python train.py --device_target "GPU" --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 & | |||
| # or enter script dir, and run the script | |||
| sh run_standalone_train_for_gpu.sh cifar-10-batches-bin ckpt | |||
| ``` | |||
| After training, the loss value will be achieved as follows: | |||
| ``` | |||
| # grep "loss is " train.log | |||
| epoch: 1 step: 1, loss is 2.3125906 | |||
| ... | |||
| epoch: 30 step: 1560, loss is 0.6687547 | |||
| epoch: 30 step: 1561, loss is 0.20055409 | |||
| epoch: 30 step: 1561, loss is 0.103845775 | |||
| ``` | |||
| The model checkpoint will be saved in the current directory. | |||
| ## [Evaluation Process](#contents) | |||
| @@ -133,44 +155,61 @@ The model checkpoint will be saved in the current directory. | |||
| Before running the command below, please check the checkpoint path used for evaluation. | |||
| ``` | |||
| python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > log.txt 2>&1 & | |||
| or enter script dir, and run the script | |||
| sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt | |||
| ``` | |||
| - running on Ascend | |||
| You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows: | |||
| ``` | |||
| python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > log.txt 2>&1 & | |||
| or enter script dir, and run the script | |||
| sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt | |||
| ``` | |||
| ``` | |||
| # grep "Accuracy: " log.txt | |||
| 'Accuracy': 0.8832 | |||
| ``` | |||
| You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows: | |||
| ``` | |||
| # grep "Accuracy: " log.txt | |||
| 'Accuracy': 0.8832 | |||
| ``` | |||
| - running on GPU | |||
| ``` | |||
| python eval.py --device_target "GPU" --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-30_1562.ckpt > log.txt 2>&1 & | |||
| or enter script dir, and run the script | |||
| sh run_standalone_eval_for_gpu.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-30_1562.ckpt | |||
| ``` | |||
| You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows: | |||
| ``` | |||
| # grep "Accuracy: " log.txt | |||
| 'Accuracy': 0.88512 | |||
| ``` | |||
| # [Model Description](#contents) | |||
| ## [Performance](#contents) | |||
| ### Evaluation Performance | |||
| | Parameters | AlexNet | | |||
| | -------------------------- | ----------------------------------------------------------- | | |||
| | Resource | Ascend 910 ;CPU 2.60GHz,56cores;Memory,314G | | |||
| | uploaded Date | 06/09/2020 (month/day/year) | | |||
| | MindSpore Version | 0.5.0-beta | | |||
| | Dataset | CIFAR-10 | | |||
| | Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | | |||
| | Optimizer | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | | |||
| | outputs | probability | | |||
| | Loss | 0.0016 | | |||
| | Speed | 21 ms/step | | |||
| | Total time | 17 mins | | |||
| | Checkpoint for Fine tuning | 445M (.ckpt file) | | |||
| | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet | | |||
| ### Evaluation Performance | |||
| | Parameters | Ascend | GPU | | |||
| | -------------------------- | ------------------------------------------------------------| -------------------------------------------------| | |||
| | Resource | Ascend 910; CPU 2.60GHz, 56cores; Memory, 314G | NV SMX2 V100-32G | | |||
| | uploaded Date | 06/09/2020 (month/day/year) | 17/09/2020 (month/day/year) | | |||
| | MindSpore Version | 0.5.0-beta | 0.7.0-beta | | |||
| | Dataset | CIFAR-10 | CIFAR-10 | | |||
| | Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 | epoch=30, steps=1562, batch_size = 32, lr=0.002 | | |||
| | Optimizer | Momentum | Momentum | | |||
| | Loss Function | Softmax Cross Entropy | Softmax Cross Entropy | | |||
| | outputs | probability | probability | | |||
| | Loss | 0.0016 | 0.01 | | |||
| | Speed | 21 ms/step | 16.8 ms/step | | |||
| | Total time | 17 mins | 14 mins | | |||
| | Checkpoint for Fine tuning | 445M (.ckpt file) | 445M (.ckpt file) | | |||
| | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet | | |||
| # [Description of Random Situation](#contents) | |||
| In dataset.py, we set the seed inside ```create_dataset``` function. | |||
| # [ModelZoo Homepage](#contents) | |||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||
| # [ModelZoo Homepage](#contents) | |||
| Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). | |||