Browse Source

!11074 replace tdt with acltdt interface

From: @ms_yan
Reviewed-by: @lilongfei15
Signed-off-by:
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 4 years ago
parent
commit
c2582dcab9
24 changed files with 483 additions and 282 deletions
  1. +3
    -1
      mindspore/ccsrc/CMakeLists.txt
  2. +1
    -1
      mindspore/ccsrc/minddata/dataset/CMakeLists.txt
  3. +4
    -4
      mindspore/ccsrc/minddata/dataset/api/datasets.cc
  4. +4
    -3
      mindspore/ccsrc/minddata/dataset/api/python/bindings/dataset/include/datasets_bindings.cc
  5. +5
    -5
      mindspore/ccsrc/minddata/dataset/engine/datasetops/device_queue_op.cc
  6. +7
    -7
      mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.cc
  7. +2
    -2
      mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.h
  8. +5
    -4
      mindspore/ccsrc/minddata/dataset/engine/tdt/CMakeLists.txt
  9. +39
    -0
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.cc
  10. +38
    -0
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.h
  11. +115
    -57
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.cc
  12. +16
    -9
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.h
  13. +4
    -2
      mindspore/ccsrc/minddata/dataset/include/datasets.h
  14. +5
    -5
      mindspore/ccsrc/minddata/dataset/util/task.cc
  15. +4
    -2
      mindspore/ccsrc/runtime/device/CMakeLists.txt
  16. +5
    -6
      mindspore/ccsrc/runtime/device/ascend/ascend_kernel_runtime.cc
  17. +29
    -26
      mindspore/ccsrc/utils/context/context_extends.cc
  18. +3
    -3
      mindspore/ccsrc/utils/context/context_extends.h
  19. +140
    -129
      mindspore/ccsrc/utils/tensorprint_utils.cc
  20. +6
    -1
      mindspore/ccsrc/utils/tensorprint_utils.h
  21. +19
    -0
      mindspore/core/utils/ms_context.cc
  22. +11
    -3
      mindspore/core/utils/ms_context.h
  23. +3
    -2
      mindspore/dataset/engine/datasets.py
  24. +15
    -10
      tests/st/ops/ascend/test_tensor_print/tensor_print_utils.py

+ 3
- 1
mindspore/ccsrc/CMakeLists.txt View File

@@ -267,6 +267,8 @@ if(ENABLE_D)
find_library(REGISTER register ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
find_library(PLATFORM platform ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
find_library(OPTILING optiling ${ASCEND_OPP_PATH} ${ASCEND_TOOLKIT_OPP_PATH})
find_library(ACL ascendcl ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})

# hccl_adpter
find_library(HCCL_ADPTER hcom_graph_adaptor ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
find_library(HCCL_RA ra ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
@@ -281,7 +283,7 @@ if(ENABLE_D)
mindspore::protobuf -Wl,--end-group)
target_link_libraries(mindspore ge_runtime ${CCE_LIB} ${RUNTIME_LIB} ${TSDCLIENT} ${HCCL} ${DATATRANSFER}
${HCCL_ADPTER} ${REGISTER} -Wl,--no-as-needed ${OPTILING} ${HCCL_BUILDER}
${HCCL_RA} ${PLATFORM})
${HCCL_RA} ${PLATFORM} ${ACL})
target_link_libraries(mindspore -Wl,--start-group proto_input mindspore::protobuf -Wl,--end-group)
elseif(CMAKE_SYSTEM_NAME MATCHES "Windows")
target_link_libraries(mindspore -Wl,--start-group proto_input mindspore::protobuf mindspore::sentencepiece


+ 1
- 1
mindspore/ccsrc/minddata/dataset/CMakeLists.txt View File

@@ -264,7 +264,7 @@ if(ENABLE_GPUQUE)
endif()

if(ENABLE_TDTQUE)
target_link_libraries(_c_dataengine PRIVATE ${TSDCLIENT})
target_link_libraries(_c_dataengine PRIVATE ${ACL})
endif()

add_dependencies(_c_dataengine _c_mindrecord)


+ 4
- 4
mindspore/ccsrc/minddata/dataset/api/datasets.cc View File

@@ -131,8 +131,8 @@ std::shared_ptr<Iterator> Dataset::CreateIterator(std::vector<std::string> colum

#ifndef ENABLE_ANDROID
// Function to return a transferred Node that transfers data through a device.
bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32_t num_epochs, bool send_epoch_end,
int32_t total_batches, bool create_data_info_queue) {
bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32_t device_id, int32_t num_epochs,
bool send_epoch_end, int32_t total_batches, bool create_data_info_queue) {
Status rc;

// Build and launch tree
@@ -144,8 +144,8 @@ bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32
}

// Add TransferNode IR on top of dataset
auto ds = std::make_shared<TransferNode>(shared_from_this()->IRNode(), queue_name, device_type, send_epoch_end,
total_batches, create_data_info_queue);
auto ds = std::make_shared<TransferNode>(shared_from_this()->IRNode(), queue_name, device_type, device_id,
send_epoch_end, total_batches, create_data_info_queue);

// Get ToDevice consumer
auto consumer = std::make_unique<ToDevice>(num_epochs);


+ 4
- 3
mindspore/ccsrc/minddata/dataset/api/python/bindings/dataset/include/datasets_bindings.cc View File

@@ -521,9 +521,10 @@ PYBIND_REGISTER(TransferNode, 2, ([](const py::module *m) {
(void)py::class_<TransferNode, DatasetNode, std::shared_ptr<TransferNode>>(*m, "TransferNode",
"to create a TransferNode")
.def(py::init([](std::shared_ptr<DatasetNode> self, std::string queue_name, std::string device_type,
bool send_epoch_end, int32_t total_batch, bool create_data_info_queue) {
auto transfer = std::make_shared<TransferNode>(self, queue_name, device_type, send_epoch_end,
total_batch, create_data_info_queue);
int32_t device_id, bool send_epoch_end, int32_t total_batch,
bool create_data_info_queue) {
auto transfer = std::make_shared<TransferNode>(
self, queue_name, device_type, device_id, send_epoch_end, total_batch, create_data_info_queue);
THROW_IF_ERROR(transfer->ValidateParams());
return transfer;
}));


+ 5
- 5
mindspore/ccsrc/minddata/dataset/engine/datasetops/device_queue_op.cc View File

@@ -55,6 +55,7 @@ DeviceQueueOp::DeviceQueueOp(std::string channel_name, DeviceType device_type, i
#endif
#ifdef ENABLE_TDTQUE
ascend_keep_waiting_ = true;
tdtInstancePtr = std::make_shared<TdtPlugin>(channel_name_, device_id_);
#endif
}

@@ -152,7 +153,7 @@ Status DeviceQueueOp::SendDataToAscend() {
RETURN_IF_NOT_OK(current_buffer->GetRow(row_id, &currRow));
WaitContinueSignal();
auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost);
if (status == TdtStatus::FAILED) {
if (status != Status::OK()) {
if (stop_send_) {
MS_LOG(INFO) << "stop_send received";
return Status::OK();
@@ -183,9 +184,9 @@ Status DeviceQueueOp::SendDataToAscend() {
}
if (current_buffer->eoe() && send_epoch_end_) {
TensorRow currRow;
auto status =
tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost, tdt::TDT_END_OF_SEQUENCE);
if (status == TdtStatus::FAILED) {
auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost,
ACL_TENSOR_DATA_END_OF_SEQUENCE);
if (status != Status::OK()) {
if (stop_send_) {
MS_LOG(INFO) << "stop_send received";
return Status::OK();
@@ -202,7 +203,6 @@ Status DeviceQueueOp::SendDataToAscend() {
}
RETURN_IF_NOT_OK(GetNextInput(&current_buffer));
}

tree_->SetFinished();

return Status::OK();


+ 7
- 7
mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.cc View File

@@ -32,20 +32,20 @@ namespace dataset {

// Constructor for TransferNode
TransferNode::TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type,
bool send_epoch_end, int32_t total_batch, bool create_data_info_queue)
int32_t device_id, bool send_epoch_end, int32_t total_batch, bool create_data_info_queue)
: prefetch_size_(16),
queue_name_(std::move(queue_name)),
device_type_(std::move(device_type)),
send_epoch_end_(send_epoch_end),
total_batch_(total_batch),
create_data_info_queue_(create_data_info_queue),
device_id_(0) {
device_id_(device_id) {
this->AddChild(child);
}

std::shared_ptr<DatasetNode> TransferNode::Copy() {
auto node = std::make_shared<TransferNode>(nullptr, queue_name_, device_type_, send_epoch_end_, total_batch_,
create_data_info_queue_);
auto node = std::make_shared<TransferNode>(nullptr, queue_name_, device_type_, device_id_, send_epoch_end_,
total_batch_, create_data_info_queue_);
return node;
}

@@ -96,9 +96,9 @@ Status TransferNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_o
RETURN_STATUS_UNEXPECTED(err_msg);
}

// Get device ID (shard ID) from children
device_id_ = 0;
RETURN_IF_NOT_OK(this->GetShardId(&device_id_));
// // Get device ID (shard ID) from children
// device_id_ = 0;
// RETURN_IF_NOT_OK(this->GetShardId(&device_id_));

auto op = std::make_shared<DeviceQueueOp>(queue_name_, type, device_id_, prefetch_size_, send_epoch_end_,
total_batch_, create_data_info_queue_);


+ 2
- 2
mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.h View File

@@ -29,8 +29,8 @@ namespace dataset {
class TransferNode : public DatasetNode {
public:
/// \brief Constructor
TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, bool send_epoch_end,
int32_t total_batch, bool create_data_info_queue);
TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, int32_t device_id,
bool send_epoch_end, int32_t total_batch, bool create_data_info_queue);

/// \brief Destructor
~TransferNode() = default;


+ 5
- 4
mindspore/ccsrc/minddata/dataset/engine/tdt/CMakeLists.txt View File

@@ -1,5 +1,6 @@
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
file(
GLOB_RECURSE _CURRENT_SRC_FILES
RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"*.cc")
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
add_library(engine-tdt OBJECT
tdt_plugin.cc
)
add_library(engine-tdt OBJECT tdt_plugin.cc tdt_handle.cc)

+ 39
- 0
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.cc View File

@@ -0,0 +1,39 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/tdt/tdt_handle.h"
namespace mindspore {
namespace dataset {

std::vector<acltdtChannelHandle *> TdtHandle::acl_handle = std::vector<acltdtChannelHandle *>();

void TdtHandle::AddHandle(acltdtChannelHandle *handle) {
if (handle != nullptr) {
acl_handle.emplace_back(handle);
}
}

bool TdtHandle::DestroyHandle() {
for (auto handle : acl_handle) {
if (handle != nullptr) {
if (acltdtDestroyChannel(handle) != ACL_SUCCESS) {
return false;
}
}
}
return true;
}
} // namespace dataset
} // namespace mindspore

+ 38
- 0
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.h View File

@@ -0,0 +1,38 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_

#include <iostream>
#include <vector>
#include "acl/acl_tdt.h"

namespace mindspore {
namespace dataset {
class TdtHandle {
public:
static void AddHandle(acltdtChannelHandle *handle);

static bool DestroyHandle();

private:
TdtHandle() {}

static std::vector<acltdtChannelHandle *> acl_handle;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_

+ 115
- 57
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.cc View File

@@ -23,108 +23,138 @@

namespace mindspore {
namespace dataset {
static std::shared_ptr<TdtPlugin> instance_ptr_ = nullptr;
TdtPlugin::TdtPlugin(const std::string &channel_name, int32_t device_id) {
// create acl tdt handle
acl_handle_ = acltdtCreateChannel(device_id, channel_name.c_str());
if (acl_handle_ == nullptr) {
MS_LOG(ERROR) << "Failed to create channel for tdt queue.";
}
TdtHandle::AddHandle(acl_handle_);
}

std::shared_ptr<TdtPlugin> TdtPlugin::GetInstance() {
if (instance_ptr_ == nullptr) {
instance_ptr_ = std::shared_ptr<TdtPlugin>(new TdtPlugin);
TdtPlugin::~TdtPlugin() {
if (acl_handle_ != nullptr && acltdtDestroyChannel(acl_handle_) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Failed to destroy channel for tdt queue.";
}
return instance_ptr_;
}

TdtStatus TdtPlugin::hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profiling, int32_t &time,
tdt::TdtDataType tdt_type) {
Status TdtPlugin::hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profiling, int32_t &time,
acltdtTensorType tdt_type) {
MS_LOG(DEBUG) << "TDT channel name is " << channel_name << ".";
std::vector<DataItem> items;

acltdtDataset *acl_dataset = nullptr;
double start_time;
if (tdt_type == tdt::TDT_TENSOR) {
auto ret = translate(ts_row, items);
if (ret != SUCCESS) {
MS_LOG(ERROR) << "TDT converting tensor failed!";
return FAILED;
}
} else if (tdt_type == tdt::TDT_END_OF_SEQUENCE) {
DataItem data_item;
data_item.dataType_ = tdt::TDT_END_OF_SEQUENCE;
items.emplace_back(data_item);
MS_LOG(INFO) << "TDT data type is TDT_END_OF_SEQUENCE";
auto ret = translate(tdt_type, ts_row, &acl_dataset);
if (ret != Status::OK()) {
DestroyAclDataset(acl_dataset);
RETURN_STATUS_UNEXPECTED("TDT converting tensor failed!");
}

if (profiling) {
start_time = ProfilingTime::GetCurMilliSecond();
}
#if ENABLE_D
// Data prefetch only when PS mode enables cache.
if (items.size() > 0) {
if (!ps::PsDataPrefetch::GetInstance().PrefetchData(channel_name, items[0].dataPtr_.get(), items[0].dataLen_)) {
return FAILED;
if (acltdtGetDatasetSize(acl_dataset) > 0) {
acltdtDataItem *item0 = acltdtGetDataItem(acl_dataset, 0);
if (!ps::PsDataPrefetch::GetInstance().PrefetchData(channel_name, acltdtGetDataAddrFromItem(item0),
acltdtGetDataSizeFromItem(item0))) {
RETURN_STATUS_UNEXPECTED("PrefetchData failed in when pre-processing sending data.");
}
}
#endif
if (tdt::TdtHostPushData(channel_name, items) != 0) {
return FAILED;
auto status = acltdtSendTensor(acl_handle_, acl_dataset, -1);
DestroyAclDataset(acl_dataset);
if (status != ACL_SUCCESS) {
RETURN_STATUS_UNEXPECTED("Tdt Send data failed.");
}
if (profiling) {
double end_time = ProfilingTime::GetCurMilliSecond();
time = (int32_t)(end_time - start_time);
}
return SUCCESS;
return Status::OK();
}

TdtStatus TdtPlugin::getTdtType(DataType d_type, std::string &datatype) {
Status TdtPlugin::getTdtType(DataType d_type, aclDataType &datatype) {
switch (d_type.value()) {
case DataType::DE_BOOL:
datatype = "bool";
datatype = ACL_BOOL;
break;
case DataType::DE_INT8:
datatype = "int8";
datatype = ACL_INT8;
break;
case DataType::DE_UINT8:
datatype = "uint8";
datatype = ACL_UINT8;
break;
case DataType::DE_INT16:
datatype = "int16";
datatype = ACL_INT16;
break;
case DataType::DE_UINT16:
datatype = "uint16";
datatype = ACL_UINT16;
break;
case DataType::DE_INT32:
datatype = "int32";
datatype = ACL_INT32;
break;
case DataType::DE_UINT32:
datatype = "uint32";
datatype = ACL_UINT32;
break;
case DataType::DE_FLOAT16:
datatype = "float16";
datatype = ACL_FLOAT16;
break;
case DataType::DE_FLOAT32:
datatype = "float32";
datatype = ACL_FLOAT;
break;
case DataType::DE_FLOAT64:
datatype = "float64";
datatype = ACL_DOUBLE;
break;
case DataType::DE_INT64:
datatype = "int64";
datatype = ACL_INT64;
break;
case DataType::DE_UINT64:
datatype = "uint64";
datatype = ACL_UINT64;
break;
default:
return FAILED;
RETURN_STATUS_UNEXPECTED("Invalid data, got unexpected data type.");
}
return SUCCESS;
return Status::OK();
}

TdtStatus TdtPlugin::translate(const TensorRow &ts_row, std::vector<DataItem> &items) {
if (ts_row.size() == 0) {
MS_LOG(ERROR) << "TDT the size of row is zero.";
return SUCCESS;
Status TdtPlugin::translate(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset **output_acl_dataset) {
auto acl_dataset = acltdtCreateDataset();
if (acl_dataset == nullptr) {
RETURN_STATUS_UNEXPECTED("Create tdt dataset failed.");
}
for (auto ts : ts_row) {
std::string datatype;
TdtStatus status = getTdtType(ts->type(), datatype);
if (status != SUCCESS) {
return status;
auto status = AssembleTensor2AclDataset(tdt_type, ts_row, acl_dataset);
if (status != Status::OK()) {
DestroyAclDataset(acl_dataset);
RETURN_STATUS_UNEXPECTED("Assemble tensor row to tdt dataset failed.");
}

*output_acl_dataset = acl_dataset;
return Status::OK();
}

Status TdtPlugin::AssembleTensor2AclDataset(acltdtTensorType tdt_type, const TensorRow &ts_row,
acltdtDataset *acl_dataset) {
if (tdt_type != ACL_TENSOR_DATA_TENSOR || ts_row.size() == 0) {
acltdtDataItem *acl_data = acltdtCreateDataItem(tdt_type, nullptr, 0, ACL_BOOL, nullptr, 0);
if (acl_data == nullptr) {
RETURN_STATUS_UNEXPECTED("Create data item failed when send data with type:" + std::to_string(tdt_type));
}
if (acltdtAddDataItem(acl_dataset, acl_data) != ACL_SUCCESS) {
if (acltdtDestroyDataItem(acl_data) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Destroy data item failed when send data with type: " << tdt_type;
}
RETURN_STATUS_UNEXPECTED("Add data item to tdt dataset failed when send data.");
}
return Status::OK();
}

for (auto ts : ts_row) {
aclDataType datatype;
acltdtDataItem *acl_data = nullptr;
RETURN_IF_NOT_OK(getTdtType(ts->type(), datatype));

TensorShape tsShape = ts->shape();
std::string dataShapes = "[";
for (auto dim : tsShape.AsVector()) {
@@ -132,18 +162,46 @@ TdtStatus TdtPlugin::translate(const TensorRow &ts_row, std::vector<DataItem> &i
}
dataShapes.pop_back();
(void)dataShapes.append("]");
DataItem data_item;
data_item.dataType_ = tdt::TDT_TENSOR;
data_item.tensorShape_ = dataShapes;
data_item.tensorType_ = datatype;
data_item.dataLen_ = ts->SizeInBytes();
data_item.dataPtr_ =

std::shared_ptr<void> dataPtr =
std::shared_ptr<void>(reinterpret_cast<uchar *>(&(*ts->begin<uint8_t>())), [](const void *elem) {});
items.emplace_back(data_item);
size_t dataLen = ts->SizeInBytes();
const dsize_t dims = tsShape.Rank();
std::vector<int64_t> dataShape;
for (auto i = 0; i < dims; i++) {
dataShape.emplace_back(tsShape[i]);
}
acl_data = acltdtCreateDataItem(ACL_TENSOR_DATA_TENSOR, (tsShape.empty() ? nullptr : &dataShape[0]), dims, datatype,
dataPtr.get(), dataLen);
if (acl_data == nullptr) {
RETURN_STATUS_UNEXPECTED("Create data item failed when send data.");
}
if (acltdtAddDataItem(acl_dataset, acl_data) != ACL_SUCCESS) {
if (acltdtDestroyDataItem(acl_data) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Destroy data item failed when send data with type ACL_TENSOR_DATA_TENSOR.";
}
RETURN_STATUS_UNEXPECTED("Add data item to tdt dataset failed when send data.");
}

MS_LOG(DEBUG) << "TDT data type is TDT_TENSOR, tensor type is " << datatype << ", tensor shape is " << dataShapes
<< ", data length is " << ts->Size() << ".";
}
return SUCCESS;

return Status::OK();
}

Status TdtPlugin::DestroyAclDataset(acltdtDataset *acl_dataset, bool include_data_item) {
if (include_data_item) {
for (size_t i = 0; i < acltdtGetDatasetSize(acl_dataset); i++) {
if (acltdtDestroyDataItem(acltdtGetDataItem(acl_dataset, i)) != ACL_SUCCESS) {
RETURN_STATUS_UNEXPECTED("Destroy data item failed when send data.");
}
}
}
if (acltdtDestroyDataset(acl_dataset) != ACL_SUCCESS) {
RETURN_STATUS_UNEXPECTED("Destroy tdt dataset failed when send data.");
}
return Status::OK();
}
} // namespace dataset
} // namespace mindspore

+ 16
- 9
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.h View File

@@ -22,33 +22,40 @@
#include <memory>
#include <string>
#include <vector>
#include "tdt/tdt_host_interface.h"
#include "acl/acl_tdt.h"
#include "minddata/dataset/engine/tdt/tdt_handle.h"

#include "minddata/dataset/core/data_type.h"
#include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/core/tensor_row.h"
#include "minddata/dataset/util/status.h"

namespace mindspore {
namespace dataset {
enum TdtStatus { SUCCESS, FAILED };

using tdt::DataItem;

class TdtPlugin {
public:
static std::shared_ptr<TdtPlugin> GetInstance();

TdtStatus hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profilig, int32_t &time,
tdt::TdtDataType tdt_type = tdt::TDT_TENSOR);
Status hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profilig, int32_t &time,
acltdtTensorType tdt_type = ACL_TENSOR_DATA_TENSOR);

TdtPlugin(const std::string &channel_name, int32_t device_id);

~TdtPlugin();

private:
TdtPlugin() {}
Status DestroyAclDataset(acltdtDataset *acl_dataset, bool include_data_item = true);

TdtStatus getTdtType(DataType d_type, std::string &datatype);
Status AssembleTensor2AclDataset(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset *acl_dataset);

TdtStatus translate(const TensorRow &ts_row, std::vector<DataItem> &items);
Status getTdtType(DataType d_type, aclDataType &datatype);

Status translate(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset **output_acl_dataset);

void *tdt_handle_ = nullptr;

acltdtChannelHandle *acl_handle_;
};
} // namespace dataset
} // namespace mindspore


+ 4
- 2
mindspore/ccsrc/minddata/dataset/include/datasets.h View File

@@ -152,14 +152,16 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
/// of data transmission per time is 256M.
/// \param[in] queue_name Channel name (default="", create new unique name).
/// \param[in] device_type Type of device (default="", get from MSContext).
/// \param[in] device_id id of device (default=0, get from MSContext).
/// \param[in] num_epochs Number of epochs (default=-1, infinite epochs).
/// \param[in] send_epoch_end Whether to send end of sequence to device or not (default=true).
/// \param[in] total_batches Number of batches to be sent to the device (default=0, all data).
/// \param[in] create_data_info_queue Whether to create queue which stores types and shapes
/// of data or not(default=false).
/// \return Returns true if no error encountered else false.
bool DeviceQueue(std::string queue_name = "", std::string device_type = "", int32_t num_epochs = -1,
bool send_epoch_end = true, int32_t total_batches = 0, bool create_data_info_queue = false);
bool DeviceQueue(std::string queue_name = "", std::string device_type = "", int32_t device_id = 0,
int32_t num_epochs = -1, bool send_epoch_end = true, int32_t total_batches = 0,
bool create_data_info_queue = false);

/// \brief Function to create a Saver to save the dynamic data processed by the dataset pipeline
/// \note Usage restrictions:


+ 5
- 5
mindspore/ccsrc/minddata/dataset/util/task.cc View File

@@ -23,8 +23,9 @@
#include "minddata/dataset/util/services.h"
#endif
#ifdef ENABLE_TDTQUE
#include "tdt/tdt_host_interface.h"
#include "acl/acl_tdt.h"
#include "tdt/status.h"
#include "minddata/dataset/engine/tdt/tdt_handle.h"
#endif

namespace mindspore {
@@ -163,11 +164,10 @@ Status Task::Join(WaitFlag blocking) {
if (wait_times > 5 && my_name_.find("DeviceQueueOp") != std::string::npos) {
MS_LOG(WARNING) << "Wait " << wait_times << " seconds, "
<< "the task: " << my_name_ << " will be destroyed by TdtHostDestory.";
int32_t destory_status = tdt::TdtHostDestroy();
if (destory_status != TDT_OK_CODE) {
MS_LOG(WARNING) << "Destroy tsd failed, status = " << destory_status << ".";
if (!TdtHandle::DestroyHandle()) {
MS_LOG(WARNING) << "Destroy tdt channel failed.";
} else {
MS_LOG(INFO) << "Destroy tsd success.";
MS_LOG(INFO) << "Destroy tdt channel success.";
}

// just wait 30 seconds


+ 4
- 2
mindspore/ccsrc/runtime/device/CMakeLists.txt View File

@@ -1,5 +1,6 @@
file(GLOB_RECURSE DEVICE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "common/*.cc"
"kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc" "memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc"
"kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc"
"memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc"
)

if(ENABLE_GPU)
@@ -9,7 +10,8 @@ else()
endif()

if(ENABLE_D)
file(GLOB_RECURSE D_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "ascend/*.cc" "kernel_adjust.cc")
file(GLOB_RECURSE D_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "ascend/*.cc" "kernel_adjust.cc"
"../../minddata/dataset/engine/tdt/tdt_handle.cc")
endif()

if(ENABLE_CPU)


+ 5
- 6
mindspore/ccsrc/runtime/device/ascend/ascend_kernel_runtime.cc View File

@@ -54,8 +54,8 @@
#include "runtime/device/ascend/profiling/profiling_callback_register.h"
#include "backend/kernel_compiler/hccl/hccl_context.h"
#ifdef ENABLE_TDTQUE
#include "tdt/tdt_host_interface.h"
#include "tdt/status.h"
#include "minddata/dataset/engine/tdt/tdt_handle.h"
using mindspore::dataset::TdtHandle;
#endif

using ge::model_runner::ModelRunner;
@@ -698,11 +698,10 @@ bool AscendKernelRuntime::RunTask(const session::KernelGraph *graph) {
#ifdef ENABLE_TDTQUE
// Run task error, we should call TdtHostDestroy to release tdt to avoid DeviceQueueOp hostPush hung
// case1: cpu usage 100% cause thread/process exit, but some tdt thread remain in backend
int32_t destory_status = tdt::TdtHostDestroy();
if (destory_status != TDT_OK_CODE) {
MS_LOG(WARNING) << "Destroy tsd failed, status = " << destory_status << ".";
if (!TdtHandle::DestroyHandle()) {
MS_LOG(WARNING) << "Destroy tdt channel failed.";
} else {
MS_LOG(INFO) << "Destroy tsd success.";
MS_LOG(INFO) << "Destroy tdt channel success.";
}
#endif
return false;


+ 29
- 26
mindspore/ccsrc/utils/context/context_extends.cc View File

@@ -22,7 +22,6 @@
#include <atomic>

#include "pybind11/pybind11.h"

#include "utils/ms_utils.h"
#include "utils/convert_utils_base.h"

@@ -46,7 +45,7 @@ bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr) {
}

if (ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF)) {
MS_LOG(DEBUG) << "TDT Dataset client is already opened.";
MS_LOG(DEBUG) << "ACLTDT Dataset client is already opened.";
ms_context_ptr->increase_param<uint32_t>(MS_CTX_TSD_REF);
return true;
}
@@ -56,10 +55,8 @@ bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr) {
return true;
}

unsigned int device_id;
unsigned int rank_size = 1;

device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID);
uint32_t rank_size = 1;
uint32_t device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID);

auto rank_size_env = common::GetEnv("RANK_SIZE");
if (rank_size_env.empty()) {
@@ -81,14 +78,14 @@ bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr) {
}
ms_context_ptr->increase_param<uint32_t>(MS_CTX_TSD_REF);
#ifdef ENABLE_TDTQUE
int32_t initStatus = tdt::TdtHostInit(device_id);
if (initStatus != TDT_OK_CODE) {
MS_LOG(EXCEPTION) << "Init tsd failed, status = " << initStatus << ".";
acltdtChannelHandle *acl_handle = ms_context_ptr->get_acl_tdt_channel_handle();
if (acl_handle == nullptr) {
MS_LOG(EXCEPTION) << "Get acltdt handle failed";
return false;
}
ms_context_ptr->tdt_print_ = std::thread(TensorPrint());
ms_context_ptr->acl_tdt_print = std::thread(TensorPrint(acl_handle));
#endif
MS_LOG(INFO) << "Open and init tsd successful, tsd reference = "
MS_LOG(INFO) << "Get the acltdt handle successful, tsd reference = "
<< ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF) << ".";
return true;
}
@@ -103,28 +100,34 @@ bool CloseTsd(const std::shared_ptr<MsContext> &ms_context_ptr, bool force) {
ms_context_ptr->decrease_param<uint32_t>(MS_CTX_TSD_REF);
if (force || ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF) == 0) {
ms_context_ptr->set_param<uint32_t>(MS_CTX_TSD_REF, 0);

#ifdef ENABLE_TDTQUE
int32_t stopStatus = tdt::TdtHostStop(KNpuLog);
if (stopStatus != TDT_OK_CODE) {
MS_LOG(EXCEPTION) << "Stop tsd failed, status = " << stopStatus << ".";
return false;
acltdtChannelHandle *acl_handle = ms_context_ptr->get_acl_tdt_channel_handle();
aclError stopStatus = acltdtStopChannel(acl_handle);
if (stopStatus != ACL_SUCCESS) {
MS_LOG(ERROR) << "Failed stop acl data channel for host queue ";
} else {
MS_LOG(INFO) << "Succeed stop acl data channel for host queue ";
}
MS_LOG(INFO) << "Succeed run cancellation callback of out-feed dequeue op ";

py::gil_scoped_release gil_release;
int32_t destroyStatus = tdt::TdtHostDestroy();
if (destroyStatus != TDT_OK_CODE) {
MS_LOG(EXCEPTION) << "Destroy tsd failed, status = " << destroyStatus << ".";
return false;
aclError destrodStatus = acltdtDestroyChannel(acl_handle);
if (destrodStatus != ACL_SUCCESS) {
MS_LOG(ERROR) << "Failed destroy acl channel for out-feed dequeue op ";
} else {
MS_LOG(INFO) << "Succeed destroy acl channel for out-feed dequeue op ";
}
try {
if (ms_context_ptr->tdt_print_.joinable()) {
MS_LOG(INFO) << "join tdt host receive process";
ms_context_ptr->tdt_print_.join();
if (ms_context_ptr->acl_tdt_print.joinable()) {
MS_LOG(INFO) << "join acl tdt host receive process";
ms_context_ptr->acl_tdt_print.join();
}
} catch (const std::exception &e) {
MS_LOG(ERROR) << "tdt thread join failed: " << e.what();
}
#endif
auto device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID);
uint32_t device_id = ms_context_ptr->get_param<uint32_t>(MS_CTX_DEVICE_ID);
auto ret = rtDeviceReset(device_id);
if (ret != RT_ERROR_NONE) {
MS_LOG(EXCEPTION) << "Device " << device_id << " call rtDeviceReset failed, ret[" << static_cast<int>(ret) << "]";
@@ -133,10 +136,9 @@ bool CloseTsd(const std::shared_ptr<MsContext> &ms_context_ptr, bool force) {
ms_context_ptr->set_param<bool>(MS_CTX_IS_PYNATIVE_GE_INIT, false);
MS_LOG(INFO) << "Call rtDeviceReset, destroy and close tsd successful, ret[" << static_cast<int>(ret) << "]";
} else {
MS_LOG(DEBUG) << "TDT Dataset client is used, no need to close, tsd reference = "
MS_LOG(DEBUG) << "Acltdt Dataset client is used, no need to close, tsd reference = "
<< ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF) << ".";
}

return true;
}
#else
@@ -230,7 +232,7 @@ void GetGeOptions(const std::shared_ptr<MsContext> &ms_context_ptr, std::map<std
} else {
(*ge_options)["ge.exec.precision_mode"] = "allow_fp32_to_fp16";
}
// Disable the global variable acc, only enable it whlie adding training graph in pipeline
// Disable the global variable acc, only enable it while adding training graph in pipeline
(*ge_options)["ge.exec.variable_acc"] = "0";
#endif
}
@@ -308,6 +310,7 @@ bool PynativeInitGe(const std::shared_ptr<MsContext> &ms_context_ptr) {
ms_context_ptr->get_param<uint32_t>(MS_CTX_GE_REF) || ms_context_ptr->get_param<uint32_t>(MS_CTX_TSD_REF)) {
return true;
}

(void)OpenTsd(ms_context_ptr);
(void)InitGe(ms_context_ptr);
ms_context_ptr->set_param(MS_CTX_IS_PYNATIVE_GE_INIT, true);


+ 3
- 3
mindspore/ccsrc/utils/context/context_extends.h View File

@@ -24,8 +24,8 @@
#include "utils/tensorprint_utils.h"

#ifndef NO_DLIB
#include "acl/acl_tdt.h"
#include "tdt/tsd_client.h"
#include "tdt/tdt_host_interface.h"
#include "tdt/data_common.h"
#include "runtime/dev.h"
#endif
@@ -35,8 +35,8 @@

namespace mindspore {
namespace context {
bool OpenTsd(const std::shared_ptr<MsContext> &inst_context);
bool CloseTsd(const std::shared_ptr<MsContext> &inst_context, bool force = false);
bool OpenTsd(const std::shared_ptr<MsContext> &ms_context_ptr);
bool CloseTsd(const std::shared_ptr<MsContext> &ms_context_ptr, bool force = false);
void SetHcclOptions(const std::shared_ptr<MsContext> &inst_context, std::map<std::string, std::string> *ge_options);
void GetGeOptions(const std::shared_ptr<MsContext> &inst_context, std::map<std::string, std::string> *ge_options);
void SetDisableReuseMemoryFlag(std::map<std::string, std::string> *ge_options);


+ 140
- 129
mindspore/ccsrc/utils/tensorprint_utils.cc View File

@@ -1,5 +1,5 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
* Copyright 2020-2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@@ -23,65 +23,35 @@
#include "pybind11/pybind11.h"
#include "utils/ms_utils.h"
#include "utils/shape_utils.h"
#ifndef NO_DLIB
#include "tdt/tsd_client.h"
#include "tdt/tdt_host_interface.h"
#include "tdt/data_common.h"
#endif

namespace py = pybind11;
namespace mindspore {
const char kShapeSeperator[] = ",";
const char kShapeScalar[] = "[0]";
const char kShapeNone[] = "[]";
static std::map<std::string, TypeId> print_type_map = {
{"int8_t", TypeId::kNumberTypeInt8}, {"uint8_t", TypeId::kNumberTypeUInt8},
{"int16_t", TypeId::kNumberTypeInt16}, {"uint16_t", TypeId::kNumberTypeUInt16},
{"int32_t", TypeId::kNumberTypeInt32}, {"uint32_t", TypeId::kNumberTypeUInt32},
{"int64_t", TypeId::kNumberTypeInt64}, {"uint64_t", TypeId::kNumberTypeUInt64},
{"float16", TypeId::kNumberTypeFloat16}, {"float", TypeId::kNumberTypeFloat32},
{"double", TypeId::kNumberTypeFloat64}, {"bool", TypeId::kNumberTypeBool}};

static std::map<std::string, size_t> type_size_map = {
{"int8_t", sizeof(int8_t)}, {"uint8_t", sizeof(uint8_t)}, {"int16_t", sizeof(int16_t)},
{"uint16_t", sizeof(uint16_t)}, {"int32_t", sizeof(int32_t)}, {"uint32_t", sizeof(uint32_t)},
{"int64_t", sizeof(int64_t)}, {"uint64_t", sizeof(uint64_t)}, {"float16", sizeof(float) / 2},
{"float", sizeof(float)}, {"double", sizeof(double)}, {"bool", sizeof(bool)}};
#ifndef NO_DLIB
static std::map<aclDataType, TypeId> print_acl_data_type_map = {
{ACL_INT8, TypeId::kNumberTypeInt8}, {ACL_UINT8, TypeId::kNumberTypeUInt8},
{ACL_INT16, TypeId::kNumberTypeInt16}, {ACL_UINT16, TypeId::kNumberTypeUInt16},
{ACL_INT32, TypeId::kNumberTypeInt32}, {ACL_UINT32, TypeId::kNumberTypeUInt32},
{ACL_INT64, TypeId::kNumberTypeInt64}, {ACL_UINT64, TypeId::kNumberTypeUInt64},
{ACL_FLOAT16, TypeId::kNumberTypeFloat16}, {ACL_FLOAT, TypeId::kNumberTypeFloat32},
{ACL_DOUBLE, TypeId::kNumberTypeFloat64}, {ACL_BOOL, TypeId::kNumberTypeBool}};

std::string GetParseType(const std::string &tensorType_) {
static const std::map<std::string, std::string> print_parse_map = {
{"int8_t", "Int8"}, {"uint8_t", "Uint8"}, {"int16_t", "Int16"}, {"uint16_t", "Uint16"},
{"int32_t", "Int32"}, {"uint32_t", "Uint32"}, {"int64_t", "Int64"}, {"uint64_t", "Uint64"},
{"float16", "Float16"}, {"float", "Float32"}, {"double", "Float64"}, {"bool", "Bool"}};
auto type_iter = print_parse_map.find(tensorType_);
if (type_iter == print_parse_map.end()) {
MS_LOG(EXCEPTION) << "type of tensor need to print is not support " << tensorType_;
}
return type_iter->second;
}
static std::map<aclDataType, size_t> acl_data_type_size_map = {
{ACL_INT8, sizeof(int8_t)}, {ACL_UINT8, sizeof(uint8_t)}, {ACL_INT16, sizeof(int16_t)},
{ACL_UINT16, sizeof(uint16_t)}, {ACL_INT32, sizeof(int32_t)}, {ACL_UINT32, sizeof(uint32_t)},
{ACL_INT64, sizeof(int64_t)}, {ACL_UINT64, sizeof(uint64_t)}, {ACL_FLOAT16, sizeof(float) / 2},
{ACL_FLOAT, sizeof(float)}, {ACL_DOUBLE, sizeof(double)}, {ACL_BOOL, sizeof(bool)}};

bool ParseTensorShape(const std::string &input_shape_str, ShapeVector *const tensor_shape, size_t *dims) {
if (tensor_shape == nullptr) {
return false;
}
MS_EXCEPTION_IF_NULL(dims);
std::string shape_str = input_shape_str;
if (shape_str.size() <= 2) {
return false;
}
(void)shape_str.erase(shape_str.begin());
shape_str.pop_back();
shape_str += kShapeSeperator;
string::size_type pos_begin = 0;
string::size_type pos_end = shape_str.find(kShapeSeperator);
while (pos_end != std::string::npos) {
string dim_str = shape_str.substr(pos_begin, pos_end - pos_begin);
tensor_shape->emplace_back(std::stoi(dim_str));
(*dims) = (*dims) * std::stoul(dim_str);
pos_begin = pos_end + sizeof(kShapeSeperator) - 1;
pos_end = shape_str.find(kShapeSeperator, pos_begin);
std::string GetParseType(const aclDataType &acl_data_type) {
static const std::map<aclDataType, std::string> print_tensor_parse_map = {
{ACL_INT8, "Int8"}, {ACL_UINT8, "Uint8"}, {ACL_INT16, "Int16"}, {ACL_UINT16, "Uint16"},
{ACL_INT32, "Int32"}, {ACL_UINT32, "Uint32"}, {ACL_INT64, "Int64"}, {ACL_UINT64, "Uint64"},
{ACL_FLOAT16, "Float16"}, {ACL_FLOAT, "Float32"}, {ACL_DOUBLE, "Float64"}, {ACL_BOOL, "Bool"}};
auto type_iter = print_tensor_parse_map.find(acl_data_type);
if (type_iter == print_tensor_parse_map.end()) {
MS_LOG(EXCEPTION) << "type of tensor need to print is not support " << acl_data_type;
}
return true;
return type_iter->second;
}

bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *const print_tensor,
@@ -90,8 +60,11 @@ bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *co
MS_EXCEPTION_IF_NULL(print_tensor);
auto *tensor_data_ptr = static_cast<uint8_t *>(print_tensor->data_c());
MS_EXCEPTION_IF_NULL(tensor_data_ptr);
auto cp_ret =
memcpy_s(tensor_data_ptr, static_cast<size_t>(print_tensor->data().nbytes()), str_data_ptr, memory_size);

size_t dest_size = static_cast<size_t>(print_tensor->data().nbytes());
size_t target_size = memory_size;

auto cp_ret = memcpy_s(tensor_data_ptr, dest_size, str_data_ptr, target_size);
if (cp_ret != EOK) {
MS_LOG(ERROR) << "Print op Failed to copy the memory to py::tensor " << cp_ret;
return false;
@@ -100,10 +73,10 @@ bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *co
}

template <typename T>
void PrintScalarToString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) {
void PrintScalarToString(const char *str_data_ptr, const aclDataType &acl_data_type, std::ostringstream *const buf) {
MS_EXCEPTION_IF_NULL(str_data_ptr);
MS_EXCEPTION_IF_NULL(buf);
*buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value=";
*buf << "Tensor(shape=[], dtype=" << GetParseType(acl_data_type) << ", value=";
const T *data_ptr = reinterpret_cast<const T *>(str_data_ptr);
if constexpr (std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value) {
const int int_data = static_cast<int>(*data_ptr);
@@ -113,11 +86,12 @@ void PrintScalarToString(const char *str_data_ptr, const string &tensor_type, st
}
}

void PrintScalarToBoolString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) {
void PrintScalarToBoolString(const char *str_data_ptr, const aclDataType &acl_data_type,
std::ostringstream *const buf) {
MS_EXCEPTION_IF_NULL(str_data_ptr);
MS_EXCEPTION_IF_NULL(buf);
const bool *data_ptr = reinterpret_cast<const bool *>(str_data_ptr);
*buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value=";
*buf << "Tensor(shape=[], dtype=" << GetParseType(acl_data_type) << ", value=";
if (*data_ptr) {
*buf << "True)\n";
} else {
@@ -125,89 +99,99 @@ void PrintScalarToBoolString(const char *str_data_ptr, const string &tensor_type
}
}

void convertDataItem2Scalar(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) {
void convertDataItem2Scalar(const char *str_data_ptr, const aclDataType &acl_data_type, std::ostringstream *const buf) {
MS_EXCEPTION_IF_NULL(str_data_ptr);
MS_EXCEPTION_IF_NULL(buf);
auto type_iter = print_type_map.find(tensor_type);
auto type_iter = print_acl_data_type_map.find(acl_data_type);
auto type_id = type_iter->second;
if (type_id == TypeId::kNumberTypeBool) {
PrintScalarToBoolString(str_data_ptr, tensor_type, buf);
PrintScalarToBoolString(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeInt8) {
PrintScalarToString<int8_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<int8_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeUInt8) {
PrintScalarToString<uint8_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<uint8_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeInt16) {
PrintScalarToString<int16_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<int16_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeUInt16) {
PrintScalarToString<uint16_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<uint16_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeInt32) {
PrintScalarToString<int32_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<int32_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeUInt32) {
PrintScalarToString<uint32_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<uint32_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeInt64) {
PrintScalarToString<int64_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<int64_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeUInt64) {
PrintScalarToString<uint64_t>(str_data_ptr, tensor_type, buf);
PrintScalarToString<uint64_t>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeFloat16) {
PrintScalarToString<float16>(str_data_ptr, tensor_type, buf);
PrintScalarToString<float16>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeFloat32) {
PrintScalarToString<float>(str_data_ptr, tensor_type, buf);
PrintScalarToString<float>(str_data_ptr, acl_data_type, buf);
} else if (type_id == TypeId::kNumberTypeFloat64) {
PrintScalarToString<double>(str_data_ptr, tensor_type, buf);
PrintScalarToString<double>(str_data_ptr, acl_data_type, buf);
} else {
MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << tensor_type << ".";
MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << GetParseType(acl_data_type) << ".";
}
}

bool judgeLengthValid(const size_t str_len, const string &tensor_type) {
auto type_iter = type_size_map.find(tensor_type);
if (type_iter == type_size_map.end()) {
bool judgeLengthValid(const size_t str_len, const aclDataType &acl_data_type) {
auto type_iter = acl_data_type_size_map.find(acl_data_type);
if (type_iter == acl_data_type_size_map.end()) {
MS_LOG(EXCEPTION) << "type of scalar to print is not support.";
}
return str_len == type_iter->second;
}

#ifndef NO_DLIB
bool ConvertDataItem2Tensor(const std::vector<tdt::DataItem> &items) {
bool ConvertDataset2Tensor(acltdtDataset *acl_dataset) {
// Acquire Python GIL
py::gil_scoped_acquire gil_acquire;
std::ostringstream buf;
bool ret_end_sequence = false;
for (auto &item : items) {
if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) {

size_t acl_dataset_size = acltdtGetDatasetSize(acl_dataset);

for (size_t i = 0; i < acl_dataset_size; i++) {
acltdtDataItem *item = acltdtGetDataItem(acl_dataset, i);
if (acltdtGetTensorTypeFromItem(item) == ACL_TENSOR_DATA_END_OF_SEQUENCE) {
ret_end_sequence = true;
MS_LOG(INFO) << "end of sequence" << std::endl;
break;
}
std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_);
MS_EXCEPTION_IF_NULL(str_data_ptr);
if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) {
if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) {
MS_LOG(EXCEPTION) << "Print op receive data length is invalid.";
}
convertDataItem2Scalar(str_data_ptr->data(), item.tensorType_, &buf);
continue;

size_t dim_num = acltdtGetDimNumFromItem(item);
void *acl_addr = acltdtGetDataAddrFromItem(item);
size_t acl_data_size = acltdtGetDataSizeFromItem(item);
aclDataType acl_data_type = acltdtGetDataTypeFromItem(item);
char *acl_data = reinterpret_cast<char *>(acl_addr);
acl_data = const_cast<char *>(reinterpret_cast<std::string *>(acl_data)->c_str());
MS_EXCEPTION_IF_NULL(acl_data);

ShapeVector tensorShape;
tensorShape.resize(dim_num);

if (acltdtGetDimsFromItem(item, tensorShape.data(), dim_num) != ACL_SUCCESS) {
MS_LOG(ERROR) << "ACL failed get dim-size from acl channel data";
}

ShapeVector tensor_shape;
size_t totaldims = 1;
if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) {
MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_;
if ((tensorShape.size() == 1 && tensorShape[0] == 0) || tensorShape.size() == 0) {
if (!judgeLengthValid(acl_data_size, acl_data_type)) {
MS_LOG(EXCEPTION) << "Print op receive data length is invalid.";
}
convertDataItem2Scalar(acl_data, acl_data_type, &buf);
continue;
}

if (item.tensorType_ == "string") {
std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_);
if (acl_data_type == ACL_STRING) {
std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size);
buf << data << std::endl;
} else {
auto type_iter = print_type_map.find(item.tensorType_);
if (type_iter == print_type_map.end()) {
MS_LOG(ERROR) << "type of tensor need to print is not support " << item.tensorType_;
auto type_iter = print_acl_data_type_map.find(acl_data_type);
if (type_iter == print_acl_data_type_map.end()) {
MS_LOG(ERROR) << "type of tensor need to print is not support " << GetParseType(acl_data_type);
continue;
}
auto type_id = type_iter->second;
mindspore::tensor::Tensor print_tensor(type_id, tensor_shape);
auto memory_size = totaldims * type_size_map[item.tensorType_];
if (PrintTensorToString(str_data_ptr->data(), &print_tensor, memory_size)) {
mindspore::tensor::Tensor print_tensor(type_id, tensorShape);
if (PrintTensorToString(acl_data, &print_tensor, acl_data_size)) {
buf << print_tensor.ToStringNoLimit() << std::endl;
}
}
@@ -216,44 +200,63 @@ bool ConvertDataItem2Tensor(const std::vector<tdt::DataItem> &items) {
return ret_end_sequence;
}

bool SaveDataItem2File(const std::vector<tdt::DataItem> &items, const std::string &print_file_path, prntpb::Print print,
std::fstream *output) {
bool SaveDataset2File(acltdtDataset *acl_dataset, const std::string &print_file_path, prntpb::Print print,
std::fstream *output) {
bool ret_end_thread = false;
for (auto &item : items) {
if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) {

for (size_t i = 0; i < acltdtGetDatasetSize(acl_dataset); i++) {
acltdtDataItem *item = acltdtGetDataItem(acl_dataset, i);
MS_EXCEPTION_IF_NULL(item);
acltdtTensorType acl_tensor_type = acltdtGetTensorTypeFromItem(item);

if (acl_tensor_type == ACL_TENSOR_DATA_END_OF_SEQUENCE) {
MS_LOG(INFO) << "Acl channel received end-of-sequence for print op.";
ret_end_thread = true;
break;
} else if (acl_tensor_type == ACL_TENSOR_DATA_ABNORMAL) {
MS_LOG(INFO) << "Acl channel received abnormal for print op.";
return true;
} else if (acl_tensor_type == ACL_TENSOR_DATA_UNDEFINED) {
MS_LOG(INFO) << "Acl channel received undefined message type for print op.";
return false;
}

prntpb::Print_Value *value = print.add_value();
std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_);
MS_EXCEPTION_IF_NULL(str_data_ptr);
if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) {
if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) {
size_t dim_num = acltdtGetDimNumFromItem(item);
void *acl_addr = acltdtGetDataAddrFromItem(item);
size_t acl_data_size = acltdtGetDataSizeFromItem(item);
aclDataType acl_data_type = acltdtGetDataTypeFromItem(item);
char *acl_data = reinterpret_cast<char *>(acl_addr);
MS_EXCEPTION_IF_NULL(acl_data);

ShapeVector tensorShape;
tensorShape.resize(dim_num);

if (acltdtGetDimsFromItem(item, tensorShape.data(), dim_num) != ACL_SUCCESS) {
MS_LOG(ERROR) << "ACL failed get dim-size from acl channel data";
}

if ((tensorShape.size() == 1 && tensorShape[0] == 0) || tensorShape.size() == 0) {
if (!judgeLengthValid(acl_data_size, acl_data_type)) {
MS_LOG(ERROR) << "Print op receive data length is invalid.";
ret_end_thread = true;
}
}

ShapeVector tensor_shape;
size_t totaldims = 1;
if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) {
MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_;
ret_end_thread = true;
}

if (item.tensorType_ == "string") {
std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_);
if (acl_data_type == ACL_STRING) {
std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size);
value->set_desc(data);
} else {
auto parse_type = GetParseType(item.tensorType_);
auto parse_type = GetParseType(acl_data_type);
prntpb::TensorProto *tensor = value->mutable_tensor();
if (!(item.tensorShape_ == kShapeScalar) && !(item.tensorShape_ == kShapeNone)) {
for (const auto &dim : tensor_shape) {
if (tensorShape.size() > 1 || (tensorShape.size() == 1 && tensorShape[0] != 1)) {
for (const auto &dim : tensorShape) {
tensor->add_dims(static_cast<::google::protobuf::int64>(dim));
}
}

tensor->set_tensor_type(parse_type);
std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_);
std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size);
tensor->set_tensor_content(data);
}

@@ -274,29 +277,37 @@ void TensorPrint::operator()() {
std::string print_file_path = ms_context->get_param<std::string>(MS_CTX_PRINT_FILE_PATH);
if (print_file_path == "") {
while (true) {
std::vector<tdt::DataItem> bundle;
if (tdt::TdtHostPopData("_npu_log", bundle) != 0) {
acltdtDataset *acl_dataset = acltdtCreateDataset();
if (acl_dataset == nullptr) {
MS_LOG(ERROR) << "Failed create acl dateaset.";
}
if (acltdtReceiveTensor(acl_handle_, acl_dataset, -1 /* no timeout */) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Acltdt receive tensor failed";
break;
}
if (ConvertDataItem2Tensor(bundle)) {
if (ConvertDataset2Tensor(acl_dataset)) {
break;
}
}
} else {
std::fstream output(print_file_path, std::ios::out | std::ios::trunc | std::ios::binary);
while (true) {
std::vector<tdt::DataItem> bundle;
if (tdt::TdtHostPopData("_npu_log", bundle) != 0) {
acltdtDataset *acl_dataset = acltdtCreateDataset();
if (acl_dataset == nullptr) {
MS_LOG(ERROR) << "Failed create acl dateaset.";
}
if (acltdtReceiveTensor(acl_handle_, acl_dataset, -1 /* no timeout */) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Acltdt receive tensor failed";
break;
}
if (SaveDataItem2File(bundle, print_file_path, print, &output)) {
if (SaveDataset2File(acl_dataset, print_file_path, print, &output)) {
break;
}
}
output.close();
std::string path_string = print_file_path;
if (chmod(common::SafeCStr(path_string), S_IRUSR) == -1) {
MS_LOG(ERROR) << "Modify file:" << print_file_path << " to r fail.";
MS_LOG(ERROR) << "Modify file:" << print_file_path << " to fail.";
return;
}
}


+ 6
- 1
mindspore/ccsrc/utils/tensorprint_utils.h View File

@@ -20,9 +20,10 @@
#include <map>
#include "ir/dtype/type.h"
#ifndef NO_DLIB
#include "acl/acl_tdt.h"
#include "tdt/tsd_client.h"
#include "tdt/tdt_host_interface.h"
#include "tdt/data_common.h"
#include "tdt/tdt_host_interface.h"
#include "proto/print.pb.h"
#include "utils/ms_context.h"
#endif
@@ -32,7 +33,11 @@ class TensorPrint {
TensorPrint() {}
~TensorPrint() = default;
#ifndef NO_DLIB
explicit TensorPrint(acltdtChannelHandle *acl_handle) { acl_handle_ = acl_handle; }
void operator()();
private:
acltdtChannelHandle *acl_handle_ = nullptr;
#endif
};
} // namespace mindspore


+ 19
- 0
mindspore/core/utils/ms_context.cc View File

@@ -50,6 +50,7 @@ MsContext::MsContext(const std::string &policy, const std::string &target) {
} else {
set_param<uint32_t>(MS_CTX_DEVICE_ID, 0);
}

set_param<uint32_t>(MS_CTX_MAX_CALL_DEPTH, MAX_CALL_DEPTH_DEFAULT);
set_param<std::string>(MS_CTX_DEVICE_TARGET, target);
set_param<int>(MS_CTX_EXECUTION_MODE, kPynativeMode);
@@ -107,4 +108,22 @@ std::string MsContext::backend_policy() const {
}
return "unknown";
}

#ifdef ENABLE_TDTQUE
acltdtChannelHandle *MsContext::get_acl_tdt_channel_handle() {
if (acl_handle == nullptr) {
std::string kReceivePrefix = "TF_RECEIVE_";
std::string channel_name = "_npu_log";
uint32_t device_id = get_param<uint32_t>(MS_CTX_DEVICE_ID);
acl_handle = acltdtCreateChannel(device_id, (kReceivePrefix + channel_name).c_str());
if (acl_handle == nullptr) {
MS_LOG(ERROR) << "Failed to create acltdt handle : " << channel_name;
return nullptr;
}
MS_LOG(INFO) << "Success to create acltdt handle: " << channel_name;
return acl_handle;
}
return acl_handle;
}
#endif
} // namespace mindspore

+ 11
- 3
mindspore/core/utils/ms_context.h View File

@@ -24,7 +24,10 @@
#include <string>
#include <utility>
#include "utils/log_adapter.h"

#include "utils/ms_utils.h"
#ifndef NO_DLIB
#include "acl/acl_tdt.h"
#endif
namespace mindspore {
enum MsBackendPolicy {
kMsBackendGeOnly = 0,
@@ -129,11 +132,13 @@ class MsContext {

std::string backend_policy() const;
bool set_backend_policy(const std::string &policy);

#ifdef ENABLE_TDTQUE
acltdtChannelHandle *get_acl_tdt_channel_handle();
#endif
static void device_seter(DeviceSeter device) { seter_ = device; }
static void device_type_seter(DeviceTypeSeter device_type) { device_type_seter_ = device_type; }

std::thread tdt_print_;
std::thread acl_tdt_print;

template <typename T>
void set_param(MsCtxParam param, const T &value) {
@@ -168,6 +173,9 @@ class MsContext {
std::string string_params_[MsCtxParam::NUM_STRING_PARAMS];

MsBackendPolicy backend_policy_;
#ifdef ENABLE_TDTQUE
acltdtChannelHandle *acl_handle = nullptr;
#endif
};

// set method implementation for type bool/int/uint32_t/float/std::string


+ 3
- 2
mindspore/dataset/engine/datasets.py View File

@@ -2698,10 +2698,11 @@ class TransferDataset(Dataset):

def parse(self, children=None):
total_batch = 0
device_id = context.get_context("device_id")
if hasattr(self.children[0], "__total_batch__"):
total_batch = self.children[0].__total_batch__
return cde.TransferNode(children[0], self.queue_name, self.device_type, self._send_epoch_end, total_batch,
self._create_data_info_queue)
return cde.TransferNode(children[0], self.queue_name, self.device_type, device_id, self._send_epoch_end,
total_batch, self._create_data_info_queue)

def create_dict_iterator(self, num_epochs=-1, output_numpy=False):
raise RuntimeError("TransferDataset is not iterable.")


+ 15
- 10
tests/st/ops/ascend/test_tensor_print/tensor_print_utils.py View File

@@ -54,15 +54,20 @@ def get_tensor(is_scalar, input_type):

if __name__ == "__main__":
net = TensorPrint()
net(get_tensor('scalar', mindspore.bool_), get_tensor('scalar', mindspore.uint8),
get_tensor('scalar', mindspore.int8), get_tensor('scalar', mindspore.uint16),
get_tensor('scalar', mindspore.int16), get_tensor('scalar', mindspore.uint32),
get_tensor('scalar', mindspore.int32), get_tensor('scalar', mindspore.uint64),
get_tensor('scalar', mindspore.int64), get_tensor('scalar', mindspore.float16),
# net(get_tensor('scalar', mindspore.bool_), get_tensor('scalar', mindspore.uint8),
# get_tensor('scalar', mindspore.int8), get_tensor('scalar', mindspore.uint16),
# get_tensor('scalar', mindspore.int16), get_tensor('scalar', mindspore.uint32),
# get_tensor('scalar', mindspore.int32), get_tensor('scalar', mindspore.uint64),
# get_tensor('scalar', mindspore.int64), get_tensor('scalar', mindspore.float16),
# get_tensor('scalar', mindspore.float32), get_tensor('scalar', mindspore.float64),
# get_tensor('array', mindspore.bool_), get_tensor('array', mindspore.uint8),
# get_tensor('array', mindspore.int8), get_tensor('array', mindspore.uint16),
# get_tensor('array', mindspore.int16), get_tensor('array', mindspore.uint32),
# get_tensor('array', mindspore.int32), get_tensor('array', mindspore.uint64),
# get_tensor('array', mindspore.int64), get_tensor('array', mindspore.float16),
# get_tensor('array', mindspore.float32), get_tensor('array', mindspore.float64))

net(get_tensor('scalar', mindspore.bool_),
get_tensor('scalar', mindspore.float32), get_tensor('scalar', mindspore.float64),
get_tensor('array', mindspore.bool_), get_tensor('array', mindspore.uint8),
get_tensor('array', mindspore.int8), get_tensor('array', mindspore.uint16),
get_tensor('array', mindspore.int16), get_tensor('array', mindspore.uint32),
get_tensor('array', mindspore.int32), get_tensor('array', mindspore.uint64),
get_tensor('array', mindspore.int64), get_tensor('array', mindspore.float16),
get_tensor('array', mindspore.bool_),
get_tensor('array', mindspore.float32), get_tensor('array', mindspore.float64))

Loading…
Cancel
Save