|
|
@@ -0,0 +1,162 @@ |
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
# |
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
|
|
# You may obtain a copy of the License at |
|
|
|
|
|
# |
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
# |
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
|
# limitations under the License. |
|
|
|
|
|
# ============================================================================ |
|
|
|
|
|
""" |
|
|
|
|
|
This test is used to monitor some features of MindArmour. |
|
|
|
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import pytest |
|
|
|
|
|
|
|
|
|
|
|
import mindspore.nn as nn |
|
|
|
|
|
from mindspore import context, Tensor |
|
|
|
|
|
from mindspore.nn import Cell, WithLossCell, TrainOneStepCell |
|
|
|
|
|
from mindspore.nn.optim.momentum import Momentum |
|
|
|
|
|
from mindspore.common.initializer import TruncatedNormal |
|
|
|
|
|
from mindspore.ops.composite import GradOperation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(): |
|
|
|
|
|
"""weight initial""" |
|
|
|
|
|
return TruncatedNormal(0.02) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): |
|
|
|
|
|
"""weight initial for conv layer""" |
|
|
|
|
|
weight = weight_variable() |
|
|
|
|
|
return nn.Conv2d(in_channels, out_channels, |
|
|
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding, |
|
|
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels): |
|
|
|
|
|
"""weight initial for fc layer""" |
|
|
|
|
|
weight = weight_variable() |
|
|
|
|
|
bias = weight_variable() |
|
|
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet(nn.Cell): |
|
|
|
|
|
""" |
|
|
|
|
|
Lenet network |
|
|
|
|
|
Args: |
|
|
|
|
|
num_class (int): Num classes, Default: 10. |
|
|
|
|
|
Returns: |
|
|
|
|
|
Tensor, output tensor |
|
|
|
|
|
Examples: |
|
|
|
|
|
>>> LeNet(num_class=10) |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, num_class=10): |
|
|
|
|
|
super(LeNet, self).__init__() |
|
|
|
|
|
self.conv1 = conv(1, 6, 5) |
|
|
|
|
|
self.conv2 = conv(6, 16, 5) |
|
|
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120) |
|
|
|
|
|
self.fc2 = fc_with_initialize(120, 84) |
|
|
|
|
|
self.fc3 = fc_with_initialize(84, 10) |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
|
|
self.flatten = nn.Flatten() |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
|
|
x = self.conv1(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.max_pool2d(x) |
|
|
|
|
|
x = self.conv2(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.max_pool2d(x) |
|
|
|
|
|
x = self.flatten(x) |
|
|
|
|
|
x = self.fc1(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.fc2(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.fc3(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GradWithSens(Cell): |
|
|
|
|
|
def __init__(self, network): |
|
|
|
|
|
super(GradWithSens, self).__init__() |
|
|
|
|
|
self.grad = GradOperation(name="grad", get_all=False, |
|
|
|
|
|
sens_param=True) |
|
|
|
|
|
self.network = network |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, inputs, weight): |
|
|
|
|
|
gout = self.grad(self.network)(inputs, weight) |
|
|
|
|
|
return gout |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GradWrapWithLoss(Cell): |
|
|
|
|
|
def __init__(self, network): |
|
|
|
|
|
super(GradWrapWithLoss, self).__init__() |
|
|
|
|
|
self._grad_all = GradOperation(name="get_all", |
|
|
|
|
|
get_all=True, |
|
|
|
|
|
sens_param=False) |
|
|
|
|
|
self._network = network |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, inputs, labels): |
|
|
|
|
|
gout = self._grad_all(self._network)(inputs, labels) |
|
|
|
|
|
return gout[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
|
|
@pytest.mark.env_onecard |
|
|
|
|
|
def test_grad_values_and_infer_shape(): |
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") |
|
|
|
|
|
inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32) |
|
|
|
|
|
sens = np.ones((inputs_np.shape[0], 10)).astype(np.float32) |
|
|
|
|
|
inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32) |
|
|
|
|
|
|
|
|
|
|
|
net = LeNet() |
|
|
|
|
|
grad_all = GradWithSens(net) |
|
|
|
|
|
|
|
|
|
|
|
grad_out = grad_all(Tensor(inputs_np), Tensor(sens)).asnumpy() |
|
|
|
|
|
out_shape = net(Tensor(inputs_np_2)).asnumpy().shape |
|
|
|
|
|
assert np.any(grad_out != 0), 'grad result can not be all zeros' |
|
|
|
|
|
assert out_shape == (64, 10), 'output shape should be (64, 10)' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
|
|
@pytest.mark.env_onecard |
|
|
|
|
|
def test_multi_grads(): |
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") |
|
|
|
|
|
sparse = False |
|
|
|
|
|
inputs_np = np.random.rand(32, 1, 32, 32).astype(np.float32) |
|
|
|
|
|
labels_np = np.random.randint(10, size=32).astype(np.int32) |
|
|
|
|
|
inputs_np_2 = np.random.rand(64, 1, 32, 32).astype(np.float32) |
|
|
|
|
|
labels_np_2 = np.random.randint(10, size=64).astype(np.int32) |
|
|
|
|
|
if not sparse: |
|
|
|
|
|
labels_np = np.eye(10)[labels_np].astype(np.float32) |
|
|
|
|
|
labels_np_2 = np.eye(10)[labels_np_2].astype(np.float32) |
|
|
|
|
|
|
|
|
|
|
|
net = LeNet() |
|
|
|
|
|
|
|
|
|
|
|
# grad operation |
|
|
|
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse) |
|
|
|
|
|
with_loss_cell = WithLossCell(net, loss_fn) |
|
|
|
|
|
grad_all = GradWrapWithLoss(with_loss_cell) |
|
|
|
|
|
grad_out = grad_all(Tensor(inputs_np), Tensor(labels_np)).asnumpy() |
|
|
|
|
|
assert np.any(grad_out != 0), 'grad result can not be all zeros' |
|
|
|
|
|
|
|
|
|
|
|
# train-one-step operation |
|
|
|
|
|
loss_fn = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=sparse) |
|
|
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), |
|
|
|
|
|
0.01, 0.9) |
|
|
|
|
|
loss_net = WithLossCell(net, loss_fn) |
|
|
|
|
|
train_net = TrainOneStepCell(loss_net, optimizer) |
|
|
|
|
|
train_net.set_train() |
|
|
|
|
|
train_net(Tensor(inputs_np_2), Tensor(labels_np_2)) |