Merge pull request !5729 from lichen/add_batchnormex_optags/v1.0.0
| @@ -32,12 +32,13 @@ namespace parallel { | |||
| class GatherV2PInfo : public OperatorInfo { | |||
| public: | |||
| GatherV2PInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||
| const PrimitiveAttrs &attrs) | |||
| const PrimitiveAttrs &attrs, const std::string &replace_op_name = GATHERV2) | |||
| : OperatorInfo(name, inputs_shape, outputs_shape, attrs, std::make_shared<GatherV2PCost>()), | |||
| axis_(0), | |||
| bias_(0), | |||
| index_offset_(0), | |||
| slice_size_(0) {} | |||
| slice_size_(0), | |||
| replace_op_name_(replace_op_name) {} | |||
| ~GatherV2PInfo() override = default; | |||
| Status Init(const StrategyPtr &strategy) override; | |||
| Status InitForCostModel(const StrategyPtr &strategy) override; | |||
| @@ -69,10 +70,10 @@ class GatherV2PInfo : public OperatorInfo { | |||
| int32_t axis_; | |||
| std::string target_ = DEVICE; | |||
| std::string replace_op_name_ = GATHERV2; | |||
| int64_t bias_; | |||
| int64_t index_offset_; | |||
| int64_t slice_size_; | |||
| std::string replace_op_name_ = GATHERV2; | |||
| Shape out_dev_matrix_shape_; | |||
| Group group_; | |||
| bool manual_split_ = false; | |||
| @@ -83,12 +84,9 @@ class GatherV2PInfo : public OperatorInfo { | |||
| class SparseGatherV2Info : public GatherV2PInfo { | |||
| public: | |||
| SparseGatherV2Info(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||
| const PrimitiveAttrs &attrs) | |||
| : GatherV2PInfo(name, inputs_shape, outputs_shape, attrs) {} | |||
| const PrimitiveAttrs &attrs, const std::string &replace_op_name = SPARSE_GATHERV2) | |||
| : GatherV2PInfo(name, inputs_shape, outputs_shape, attrs, replace_op_name) {} | |||
| ~SparseGatherV2Info() override = default; | |||
| private: | |||
| std::string replace_op_name_ = SPARSE_GATHERV2; | |||
| }; | |||
| class EmbeddingLookupInfo : public GatherV2PInfo { | |||
| @@ -197,6 +197,7 @@ constexpr char ARGMAXWITHVALUE[] = "ArgMaxWithValue"; | |||
| constexpr char ARGMINWITHVALUE[] = "ArgMinWithValue"; | |||
| constexpr char CONV2D[] = "Conv2D"; | |||
| constexpr char FUSE_BATCH_NORM[] = "FusedBatchNorm"; | |||
| constexpr char FUSE_BATCH_NORM_EX[] = "FusedBatchNormEx"; | |||
| constexpr char BATCH_NORM[] = "BatchNorm"; | |||
| constexpr char LAYER_NORM[] = "LayerNorm"; | |||
| constexpr char POOLING[] = "Pooling"; | |||
| @@ -263,7 +263,7 @@ bool IsSplittableOperator(const std::string &op_name) { | |||
| LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT, | |||
| STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT, | |||
| SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, | |||
| EMBEDDING_LOOKUP}; | |||
| EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX}; | |||
| // clang-format on | |||
| auto iter = splittable_op.find(op_name); | |||
| @@ -570,8 +570,7 @@ std::vector<AnfNodePtr> ReplaceOpInput(const Operator &replace_op, const std::st | |||
| MS_LOG(EXCEPTION) << "Failure: " << node->ToString() << " size is smaller than 2"; | |||
| } | |||
| std::vector<AnfNodePtr> replace_input = {NewValueNode(pyop_instance), node->input(1)}; | |||
| auto prim = GetValueNode<PrimitivePtr>(node->input(0)); | |||
| if (prim->name() == EMBEDDING_LOOKUP) { | |||
| if (replace_op.first == EMBEDDING_LOOKUP) { | |||
| replace_input = {NewValueNode(pyop_instance), node->input(1), node->input(2)}; | |||
| } | |||
| if (!params.empty()) { | |||
| @@ -40,7 +40,7 @@ CommManager &CommManager::GetInstance() noexcept { | |||
| #define HCCL_RUN_CHECK(op_name, group, op) \ | |||
| do { \ | |||
| auto hccl_result = (op); \ | |||
| if (hccl_result != tagHcclResult::HCCL_SUCCESS) { \ | |||
| if (hccl_result != 0) { \ | |||
| MS_LOG(ERROR) << op_name << " failed: #" << group << "#"; \ | |||
| return false; \ | |||
| } \ | |||
| @@ -0,0 +1,76 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| import numpy as np | |||
| import mindspore as ms | |||
| from mindspore import Tensor | |||
| from mindspore import context | |||
| from mindspore.common.api import _executor | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| import mindspore.nn as nn | |||
| from tests.ut.python.ops.test_math_ops import VirtualLoss | |||
| grad_all = C.GradOperation(get_all=True) | |||
| class NetWithLoss(nn.Cell): | |||
| def __init__(self, network): | |||
| super(NetWithLoss, self).__init__() | |||
| self.loss = VirtualLoss() | |||
| self.network = network | |||
| def construct(self, x, y, b): | |||
| predict = self.network(x, y, b) | |||
| return self.loss(predict) | |||
| class GradWrap(nn.Cell): | |||
| def __init__(self, network): | |||
| super(GradWrap, self).__init__() | |||
| self.network = network | |||
| def construct(self, x, y, b): | |||
| return grad_all(self.network)(x, y, b) | |||
| # model_parallel test | |||
| def test_two_matmul_batchnorm_ex(): | |||
| class Net(nn.Cell): | |||
| def __init__(self, strategy1, strategy2): | |||
| super().__init__() | |||
| self.matmul1 = P.MatMul().set_strategy(strategy1) | |||
| self.norm = P.FusedBatchNormEx() | |||
| self.gamma = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="gamma") | |||
| self.beta = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="beta") | |||
| self.mean = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="mean") | |||
| self.var = Parameter(Tensor(np.ones([64]), dtype=ms.float32), name="var") | |||
| self.matmul2 = P.MatMul().set_strategy(strategy2) | |||
| def construct(self, x, y, b): | |||
| out = self.matmul1(x, y) | |||
| out = self.norm(out, self.gamma, self.beta, self.mean, self.var)[0] | |||
| out = self.matmul2(out, b) | |||
| return out | |||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8) | |||
| strategy1 = ((4, 2), (2, 1)) | |||
| strategy2 = ((1, 8), (8, 1)) | |||
| net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | |||
| net.set_auto_parallel() | |||
| x = Tensor(np.ones([128, 32]), dtype=ms.float32) | |||
| y = Tensor(np.ones([32, 64]), dtype=ms.float32) | |||
| b = Tensor(np.ones([64, 64]), dtype=ms.float32) | |||
| _executor.compile(net, x, y, b) | |||
| @@ -13,7 +13,6 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore as ms | |||
| import mindspore.nn as nn | |||
| @@ -158,18 +157,6 @@ def test_gatherv2_semi_auto7(): | |||
| _executor.compile(net, x, y) | |||
| def test_gatherv2_semi_auto8(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") | |||
| strategy1 = ((8,), (1, 1)) | |||
| strategy2 = ((4, 2), (4, 2)) | |||
| net = GradWrap(NetWithLoss(Net(0, strategy1, strategy2))) | |||
| net.set_auto_parallel() | |||
| x = Tensor(np.ones([64]), dtype=ms.float32) | |||
| y = Tensor(np.ones([64, 64]), dtype=ms.float32) | |||
| _executor.compile(net, x, y) | |||
| def test_gatherv2_auto0(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") | |||
| net = GradWrap(NetWithLoss(Net(0))) | |||
| @@ -188,7 +175,6 @@ def test_gatherv2_auto1(): | |||
| _executor.compile(net, x, y) | |||
| @pytest.mark.skip(reason="The transition from GatherV2 to EmbeddingLookup needs adjusting. by lichen") | |||
| def test_gatherv2_cpu0(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") | |||
| strategy1 = ((8, 1), (1, 1)) | |||
| @@ -201,7 +187,6 @@ def test_gatherv2_cpu0(): | |||
| _executor.compile(net, x, y) | |||
| @pytest.mark.skip(reason="The transition from GatherV2 to EmbeddingLookup needs adjusting. by lichen") | |||
| def test_gatherv2_cpu1(): | |||
| context.set_auto_parallel_context(device_num=16, global_rank=0, parallel_mode="semi_auto_parallel") | |||
| strategy1 = ((16, 1), (1, 1)) | |||
| @@ -214,7 +199,6 @@ def test_gatherv2_cpu1(): | |||
| _executor.compile(net, x, y) | |||
| @pytest.mark.skip(reason="The transition from GatherV2 to EmbeddingLookup needs adjusting. by lichen") | |||
| def test_gatherv2_cpu2(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") | |||
| strategy1 = ((1, 8), (1, 1)) | |||