|
|
|
@@ -49,38 +49,37 @@ class RCWM_3D(nn.Cell): |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_RCWM_3D(): |
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
input_tensor = Tensor(np.ones([3, 4, 5]).astype(np.bool)) |
|
|
|
expect1 = [[0, 1, 1], [0, 2, 1], [0, 2, 2], [1, 0, 1], [0, 1, 3], [0, 3, 0], [1, 3, 2], \ |
|
|
|
[0, 0, 0], [1, 1, 2], [1, 3, 4]] |
|
|
|
expect2 = [True, True, True, True, True, True, True, True, True, True] |
|
|
|
expect1 = (10, 3) |
|
|
|
expect2 = (10,) |
|
|
|
rcwm = RCWM_3D() |
|
|
|
output1, output2 = rcwm(input_tensor) |
|
|
|
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1) |
|
|
|
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2) |
|
|
|
assert output1.shape == expect1 |
|
|
|
assert output2.shape == expect2 |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_RCWM_count_out(): |
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool)) |
|
|
|
expect1 = [[0, 2], [2, 2], [2, 1], [2, 0], [0, 0], [3, 3], [2, 3], [1, 3], [0, 0], [0, 0]] |
|
|
|
expect2 = [True, True, True, True, True, True, True, True, False, False] |
|
|
|
expect1 = (10, 2) |
|
|
|
expect2 = (10,) |
|
|
|
rcwm = RCWM_count_out() |
|
|
|
output1, output2 = rcwm(input_tensor) |
|
|
|
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1) |
|
|
|
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2) |
|
|
|
assert output1.shape == expect1 |
|
|
|
assert output2.shape == expect2 |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_RCWM_count_in(): |
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
input_tensor = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool)) |
|
|
|
expect1 = [[0, 2], [2, 2], [2, 1], [2, 0]] |
|
|
|
expect2 = [True, True, True, True] |
|
|
|
expect1 = (4, 2) |
|
|
|
expect2 = (4,) |
|
|
|
rcwm = RCWM_count_in() |
|
|
|
output1, output2 = rcwm(input_tensor) |
|
|
|
assert np.all(output1.asnumpy() == np.array(expect1)), "output: {}, expect: {}".format(output1, expect1) |
|
|
|
assert np.all(output2.asnumpy() == np.array(expect2)), "output: {}, expect: {}".format(output2, expect2) |
|
|
|
assert output1.shape == expect1 |
|
|
|
assert output2.shape == expect2 |