| @@ -78,6 +78,8 @@ set(CODER_OPCODERS_SRC | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/concat_int8_coder.cc | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/fullconnection_int8_coder.cc | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/matmul_int8_coder.cc | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/conv2d_3x3_int8_coder.cc | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/conv2d_int8_coder.cc | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/pooling_int8_coder.cc | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/reduce_int8_coder.cc | |||
| ${MICRO_DIR}/coder/opcoders/nnacl/int8/reshape_int8_coder.cc | |||
| @@ -120,10 +122,12 @@ set(LITE_KERNEL_SRC | |||
| ${LITE_DIR}/nnacl/int8/matmul_int8.c | |||
| ${LITE_DIR}/nnacl/int8/fixed_point.c | |||
| ${LITE_DIR}/nnacl/fp32/matmul_fp32.c | |||
| ${LITE_DIR}/nnacl/int8/conv3x3_int8.c | |||
| ) | |||
| set(MICRO_ADAPTER_SRC | |||
| ${MICRO_DIR}/wrapper/fp32/matmul_fp32_wrapper.c | |||
| ${MICRO_DIR}/wrapper/int8/matmul_int8_wrapper.c | |||
| ${MICRO_DIR}/wrapper/int8/conv_init_int8.c | |||
| ) | |||
| list(APPEND FILE_SET ${CODER_SRC} ${CODER_UTILS_SRC} ${CODER_OPCODERS_SRC} ${CODER_GENERATOR_SRC} | |||
| @@ -0,0 +1,161 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "micro/coder/opcoders/nnacl/int8/conv2d_3x3_int8_coder.h" | |||
| #include <string> | |||
| #include <vector> | |||
| #include "securec/include/securec.h" | |||
| #include "nnacl/int8/conv3x3_int8.h" | |||
| #include "src/runtime/kernel/arm/base/convolution_base.h" | |||
| #include "src/runtime/kernel/arm/int8/convolution_3x3_int8.h" | |||
| #include "micro/coder/opcoders/file_collector.h" | |||
| #include "micro/coder/log.h" | |||
| #include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h" | |||
| namespace mindspore::lite::micro::nnacl { | |||
| void ProcessFilterUint8(int8_t *origin_weight, int16_t *dst_weight, ConvParameter *conv_param) { | |||
| int input_channel = conv_param->input_channel_; | |||
| int output_channel = conv_param->output_channel_; | |||
| int kernel_plane = conv_param->kernel_w_ * conv_param->kernel_h_; | |||
| int iC8 = UP_DIV(input_channel, C8NUM); | |||
| size_t tmp_size = output_channel * iC8 * C8NUM * kernel_plane * sizeof(int16_t); | |||
| auto tmp_addr = reinterpret_cast<int16_t *>(malloc(tmp_size)); | |||
| MS_CHECK_PTR_IF_NULL(tmp_addr); | |||
| int ret = memset_s(tmp_addr, tmp_size, 0, tmp_size); | |||
| if (ret != EOK) { | |||
| free(tmp_addr); | |||
| MS_LOG(ERROR) << "memset_s tmp_addr failed."; | |||
| return; | |||
| } | |||
| PackWeightToC8Int8(origin_weight, tmp_addr, conv_param); | |||
| Conv3x3Int8FilterTransform(tmp_addr, dst_weight, iC8, output_channel, kernel_plane); | |||
| free(tmp_addr); | |||
| } | |||
| int Conv2D3x3Int8Coder::InitWeightBias() { | |||
| int input_channel = conv_param_->input_channel_; | |||
| int output_channel = conv_param_->output_channel_; | |||
| MS_CHECK_TRUE(input_channel > 0, "invalid input_channel"); | |||
| MS_CHECK_TRUE(output_channel > 0, "invalid output_channel"); | |||
| int iC8 = UP_DIV(input_channel, C8NUM); | |||
| int oC4 = UP_DIV(output_channel, C4NUM); | |||
| // init weight | |||
| int transformed_size = iC8 * C8NUM * oC4 * C4NUM * 16 * sizeof(int16_t); | |||
| transformed_filter_addr_ = | |||
| static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, transformed_size, kOfflinePackWeight)); | |||
| MS_CHECK_PTR(transformed_filter_addr_); | |||
| MS_CHECK_RET_CODE(memset_s(transformed_filter_addr_, transformed_size, 0, transformed_size), | |||
| "memset_s transformed_filter_addr_ failed."); | |||
| auto *original_weight_addr = reinterpret_cast<int8_t *>(filter_tensor_->data_c()); | |||
| ProcessFilterUint8(original_weight_addr, transformed_filter_addr_, conv_param_); | |||
| // init bias | |||
| int new_bias_size = oC4 * C4NUM * sizeof(int32_t); | |||
| new_bias_addr_ = static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, new_bias_size, kOfflinePackWeight)); | |||
| MS_CHECK_PTR(new_bias_addr_); | |||
| MS_CHECK_RET_CODE(memset_s(new_bias_addr_, new_bias_size, 0, new_bias_size), "memset_s new_bias_addr_ failed."); | |||
| if (input_tensors_.size() == kInputSize2) { | |||
| auto *ori_bias_addr = reinterpret_cast<int32_t *>(bias_tensor_->data_c()); | |||
| MS_CHECK_RET_CODE( | |||
| memcpy_s(new_bias_addr_, output_channel * sizeof(int32_t), ori_bias_addr, output_channel * sizeof(int32_t)), | |||
| "memset_s new_bias_addr_ failed."); | |||
| } else { | |||
| MS_ASSERT(input_tensors_.size() == kInputSize1); | |||
| } | |||
| return RET_OK; | |||
| } | |||
| int Conv2D3x3Int8Coder::InitTmpBuffer(CoderContext *const context) { | |||
| int ic8 = UP_DIV(conv_param_->input_channel_, C8NUM); | |||
| int oc4 = UP_DIV(conv_param_->output_channel_, C4NUM); | |||
| int in_batch = conv_param_->input_batch_; | |||
| int input_w = conv_param_->input_w_; | |||
| int input_h = conv_param_->input_h_; | |||
| int output_batch = conv_param_->output_batch_; | |||
| int output_w = conv_param_->output_w_; | |||
| int output_h = conv_param_->output_h_; | |||
| /*=============================tile_buffer_============================*/ | |||
| tile_buffer_size_ = thread_num_ * TILE_NUM * 16 * ic8 * C8NUM * sizeof(int16_t); | |||
| tile_buffer_ = static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, tile_buffer_size_, kWorkspace)); | |||
| /*=============================block_unit_buffer_============================*/ | |||
| block_unit_buffer_size_ = thread_num_ * 4 * 4 * C8NUM * sizeof(int16_t); | |||
| block_unit_buffer_ = | |||
| static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, block_unit_buffer_size_, kWorkspace)); | |||
| /*=============================tmp_dst_buffer_============================*/ | |||
| tmp_dst_buffer_size_ = thread_num_ * TILE_NUM * 16 * oc4 * C4NUM * sizeof(int32_t); | |||
| tmp_dst_buffer_ = static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, tmp_dst_buffer_size_, kWorkspace)); | |||
| /*=============================tmp_out_============================*/ | |||
| tmp_out_size_ = oc4 * C4NUM * output_batch * output_w * output_h * sizeof(uint8_t); | |||
| tmp_out_ = static_cast<uint8_t *>(allocator_->Malloc(kNumberTypeUInt8, tmp_out_size_, kWorkspace)); | |||
| /*=============================input_data_============================*/ | |||
| c8_input_size_ = in_batch * input_h * input_w * ic8 * C8NUM * sizeof(int16_t); | |||
| c8_input_ = static_cast<int16_t *>(allocator_->Malloc(kNumberTypeInt16, c8_input_size_, kWorkspace)); | |||
| return RET_OK; | |||
| } | |||
| void Conv2D3x3Int8Coder::ConfigInputOutput() { output_tensor_->set_format(schema::Format_NHWC); } | |||
| int Conv2D3x3Int8Coder::Prepare(CoderContext *const context) { | |||
| conv_param_->thread_num_ = thread_num_; | |||
| // to 1, task id is set to 0 | |||
| conv_param_->op_parameter_.thread_num_ = thread_num_; | |||
| MS_CHECK_RET_CODE(Conv2DBaseCoder::Init(), "ConvolutionBase init failed."); | |||
| MS_CHECK_RET_CODE(SetQuantParam(), "Set quant param failed."); | |||
| MS_CHECK_RET_CODE(InitWeightBias(), "Init weight bias failed."); | |||
| // init tmp input, output | |||
| MS_CHECK_RET_CODE(InitTmpBuffer(context), "Init tmp buffer failed."); | |||
| // config input output | |||
| ConfigInputOutput(); | |||
| return RET_OK; | |||
| } | |||
| int Conv2D3x3Int8Coder::DoCode(CoderContext *const context) { | |||
| Collect(context, {"nnacl/int8/conv_int8.h"}, {"pack.c", "conv_int8.c", "fixed_point.c"}); | |||
| nnacl::NNaclInt8Serializer code; | |||
| code.precision(kPrecision); | |||
| // call the op function | |||
| code.CodeFunction("memset", tile_buffer_, 0, tile_buffer_size_); | |||
| code.CodeFunction("memset", block_unit_buffer_, 0, block_unit_buffer_size_); | |||
| code.CodeFunction("memset", tmp_dst_buffer_, 0, tmp_dst_buffer_size_); | |||
| code.CodeFunction("memset", tmp_out_, 0, tmp_out_size_); | |||
| code.CodeFunction("memset", c8_input_, 0, c8_input_size_); | |||
| // define conv params | |||
| code.CodeStruct("conv_param_", *conv_param_); | |||
| // pack to c8 | |||
| code.CodeFunction("PackInputToC8Int8", input_tensor_, c8_input_, "&conv_param_"); | |||
| // code operator func | |||
| if (thread_num_ > 1) { | |||
| code.CodeBaseStruct("Conv3x3Int8Args", "args", c8_input_, transformed_filter_addr_, new_bias_addr_, output_tensor_, | |||
| tile_buffer_, block_unit_buffer_, tmp_dst_buffer_, tmp_out_, "&conv_param_"); | |||
| code.CodeFunction("ParallelLaunch", "THREAD_POOL_DEFAULT", "Conv3x3Int8Run", "&args", "thread_num"); | |||
| } else { | |||
| int task_id = 0; | |||
| code.CodeFunction("Conv3x3Int8", c8_input_, transformed_filter_addr_, new_bias_addr_, output_tensor_, tile_buffer_, | |||
| block_unit_buffer_, tmp_dst_buffer_, tmp_out_, task_id, "&conv_param_"); | |||
| } | |||
| code.CodeFunction("PackNC4HW4ToNHWCInt8", tmp_out_, output_tensor_, conv_param_->output_batch_, | |||
| conv_param_->output_h_ * conv_param_->output_w_, conv_param_->output_channel_); | |||
| context->AppendCode(code.str()); | |||
| return RET_OK; | |||
| } | |||
| } // namespace mindspore::lite::micro::nnacl | |||
| @@ -0,0 +1,61 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_Conv2D_3X3_INT8_CODER_H_ | |||
| #define MINDSPORE_LITE_MICRO_CODER_OPCODERS_Conv2D_3X3_INT8_CODER_H_ | |||
| #include "micro/coder/opcoders/base/conv2d_base_coder.h" | |||
| #include <memory> | |||
| #include <string> | |||
| #include <vector> | |||
| #include "nnacl/conv_parameter.h" | |||
| namespace mindspore::lite::micro::nnacl { | |||
| class Conv2D3x3Int8Coder final : public Conv2DBaseCoder { | |||
| public: | |||
| Conv2D3x3Int8Coder(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors, | |||
| const Model::Node *node, size_t node_index, Target target) | |||
| : Conv2DBaseCoder(in_tensors, out_tensors, node, node_index, target) {} | |||
| int Prepare(CoderContext *const context) override; | |||
| int DoCode(CoderContext *const context) override; | |||
| ~Conv2D3x3Int8Coder() override = default; | |||
| private: | |||
| int InitWeightBias(); | |||
| void ConfigInputOutput(); | |||
| int InitTmpBuffer(CoderContext *ctx); | |||
| int16_t *transformed_filter_addr_{nullptr}; | |||
| int32_t *new_bias_addr_{nullptr}; | |||
| int16_t *block_unit_buffer_{nullptr}; | |||
| int16_t *tile_buffer_{nullptr}; | |||
| int32_t *tmp_dst_buffer_{nullptr}; | |||
| uint8_t *tmp_out_{nullptr}; | |||
| int16_t *c8_input_{nullptr}; | |||
| size_t tile_buffer_size_{0}; | |||
| size_t block_unit_buffer_size_{0}; | |||
| size_t tmp_dst_buffer_size_{0}; | |||
| size_t tmp_out_size_{0}; | |||
| size_t c8_input_size_{0}; | |||
| }; | |||
| } // namespace mindspore::lite::micro::nnacl | |||
| #endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_Conv2D_3X3_INT8_CODER_H_ | |||
| @@ -0,0 +1,265 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "micro/coder/opcoders/nnacl/int8/conv2d_int8_coder.h" | |||
| #include <memory> | |||
| #include <string> | |||
| #include <vector> | |||
| #include <utility> | |||
| #include "securec/include/securec.h" | |||
| #include "micro/coder/opcoders/nnacl/int8/conv2d_3x3_int8_coder.h" | |||
| #include "micro/coder/log.h" | |||
| #include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h" | |||
| #include "src/runtime/kernel/arm/base/convolution_base.h" | |||
| #include "src/runtime/kernel/arm/int8/convolution_int8.h" | |||
| #include "src/ops/populate/populate_register.h" | |||
| #include "micro/coder/opcoders/file_collector.h" | |||
| using mindspore::schema::PrimitiveType_Conv2D; | |||
| namespace mindspore::lite::micro::nnacl { | |||
| int Conv2DINT8Coder::InitTmpBuffer(CoderContext *const context) { | |||
| int kernel_plane = conv_param_->kernel_h_ * conv_param_->kernel_w_; | |||
| int tmp_size; | |||
| if (target_ == kARM64) { | |||
| tmp_size = MSMAX(UP_ROUND(kernel_plane * conv_param_->input_channel_, C4NUM), | |||
| UP_ROUND(kernel_plane * conv_param_->input_channel_, C16NUM)); | |||
| } else { | |||
| if (support_optimize_) { | |||
| tmp_size = UP_ROUND(kernel_plane * conv_param_->input_channel_, C4NUM); | |||
| } else { | |||
| tmp_size = UP_ROUND(kernel_plane * conv_param_->input_channel_, C16NUM); | |||
| } | |||
| } | |||
| // malloc packed input | |||
| packed_input_size_ = tmp_size * thread_num_ * tile_num_ * sizeof(int8_t); | |||
| packed_input_ = static_cast<int8_t *>(allocator_->Malloc(kNumberTypeInt8, packed_input_size_, kWorkspace)); | |||
| MS_CHECK_PTR(packed_input_); | |||
| matmul_packed_input_size_ = thread_num_ * tile_num_ * kernel_plane * conv_param_->input_channel_ * sizeof(int8_t); | |||
| matmul_packed_input_ = | |||
| static_cast<int8_t *>(allocator_->Malloc(kNumberTypeInt8, matmul_packed_input_size_, kWorkspace)); | |||
| MS_CHECK_PTR(matmul_packed_input_); | |||
| return RET_OK; | |||
| } | |||
| void Conv2DINT8Coder::CheckSupportOptimize() { | |||
| tile_num_ = 8; | |||
| matmul_func_ = "NULL"; | |||
| switch (target_) { | |||
| case kARM32A: | |||
| support_optimize_ = false; | |||
| tile_num_ = 4; | |||
| matmul_func_ = "NULL"; | |||
| break; | |||
| case kARM64: | |||
| // check support_optimize at runtime | |||
| matmul_func_ = "MatMulRInt8_optimize_handler"; | |||
| tile_num_ = 8; | |||
| break; | |||
| case kX86: | |||
| support_optimize_ = true; | |||
| tile_num_ = 8; | |||
| break; | |||
| default: | |||
| MS_LOG(ERROR) << "target not supported"; | |||
| return; | |||
| } | |||
| conv_param_->tile_num_ = tile_num_; | |||
| } | |||
| int Conv2DINT8Coder::InitWeightBias(CoderContext *const context) { | |||
| int32_t input_channel = filter_tensor_->Channel(); | |||
| int32_t output_channel = filter_tensor_->Batch(); | |||
| int32_t kernel_h = filter_tensor_->Height(); | |||
| int32_t kernel_w = filter_tensor_->Width(); | |||
| conv_param_->input_channel_ = input_channel; | |||
| conv_param_->output_channel_ = output_channel; | |||
| auto output_channel_size = static_cast<size_t>(output_channel); | |||
| auto output_channel_data_size = static_cast<size_t>(output_channel_size * sizeof(int32_t)); | |||
| int32_t input_zp = conv_param_->conv_quant_arg_.input_quant_args_[0].zp_; | |||
| filter_peroc_ = conv_quant_arg_->per_channel_ & FILTER_PER_CHANNEL; | |||
| if (filter_peroc_) { | |||
| filter_zp_ptr_ = | |||
| static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, output_channel_data_size, kOfflinePackWeight)); | |||
| MS_CHECK_PTR(filter_zp_ptr_); | |||
| MS_CHECK_RET_CODE(memset_s(filter_zp_ptr_, output_channel_data_size, 0, output_channel_data_size), | |||
| "memset_s filter_zp_ptr_addr failed."); | |||
| for (int oc = 0; oc < output_channel; oc++) { | |||
| filter_zp_ptr_[oc] = conv_param_->conv_quant_arg_.filter_quant_args_[oc].zp_; | |||
| } | |||
| } | |||
| int up_round_oc; | |||
| switch (target_) { | |||
| case kARM32A: | |||
| up_round_oc = UP_ROUND(output_channel, C2NUM); | |||
| break; | |||
| case kARM64: | |||
| up_round_oc = MSMAX(UP_ROUND(output_channel, C8NUM), UP_ROUND(output_channel, C4NUM)); | |||
| break; | |||
| case kX86: | |||
| up_round_oc = UP_ROUND(output_channel, C8NUM); | |||
| break; | |||
| default: | |||
| MS_LOG(ERROR) << "target not supported"; | |||
| return RET_ERROR; | |||
| } | |||
| if (filter_peroc_) { | |||
| input_sum_size_ = up_round_oc * tile_num_ * thread_num_ * sizeof(int32_t); | |||
| } else { | |||
| input_sum_size_ = tile_num_ * thread_num_ * sizeof(int32_t); | |||
| } | |||
| input_sum_ = | |||
| static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, static_cast<size_t>(input_sum_size_), kWorkspace)); | |||
| MS_CHECK_PTR(input_sum_); | |||
| packed_weight_ = static_cast<int8_t *>(allocator_->Malloc(kNumberTypeInt8, kOnlineSize, kOnlinePackWeight)); | |||
| MS_CHECK_PTR(packed_weight_); | |||
| bias_data_ = static_cast<int32_t *>(allocator_->Malloc(kNumberTypeInt32, kOnlineSize, kOnlinePackWeight)); | |||
| MS_CHECK_PTR(bias_data_); | |||
| std::string filter_zp_str = ""; | |||
| std::string packed_weight_str = "(int8_t **)&" + allocator_->GetRuntimeAddr(packed_weight_); | |||
| std::string bias_data_str = "(int32_t **)&" + allocator_->GetRuntimeAddr(bias_data_); | |||
| nnacl::NNaclInt8Serializer code; | |||
| if (filter_peroc_) { | |||
| filter_zp_str = allocator_->GetRuntimeAddr(filter_zp_ptr_); | |||
| } else { | |||
| filter_zp_str = "filter_zp"; | |||
| code << "int32_t filter_zp[1] = {" << conv_param_->conv_quant_arg_.filter_quant_args_[0].zp_ << "};\n"; | |||
| } | |||
| if (target_ == kARM64) { | |||
| code.CodeFunctionWithCheck("ConvInit", filter_tensor_, bias_tensor_, filter_zp_str, kernel_h, kernel_w, | |||
| input_channel, output_channel, input_zp, filter_peroc_, "GetSupportOptFlag()", | |||
| packed_weight_str, bias_data_str); | |||
| } else { | |||
| code.CodeFunctionWithCheck("ConvInit", filter_tensor_, bias_tensor_, filter_zp_str, kernel_h, kernel_w, | |||
| input_channel, output_channel, input_zp, filter_peroc_, support_optimize_, | |||
| packed_weight_str, bias_data_str); | |||
| } | |||
| context->AppendInitCode(code.str()); | |||
| return RET_OK; | |||
| } | |||
| int Conv2DINT8Coder::Prepare(CoderContext *const context) { | |||
| Conv2DBaseCoder::Init(); | |||
| CheckSupportOptimize(); | |||
| MS_CHECK_RET_CODE(SetQuantParam(), "Set quant param failed!"); | |||
| MS_CHECK_RET_CODE(InitWeightBias(context), "Init weight bias failed."); | |||
| MS_CHECK_RET_CODE(Resize(), "Resize failed."); | |||
| MS_CHECK_RET_CODE(InitTmpBuffer(context), "InitTmpBuffer failed."); | |||
| return RET_OK; | |||
| } | |||
| int Conv2DINT8Coder::Resize() { | |||
| MS_CHECK_RET_CODE(Conv2DBaseCoder::CheckResizeValid(), "Resize is invalid."); | |||
| MS_CHECK_RET_CODE(Conv2DBaseCoder::Init(), "Conv2DBaseCoder init failed."); | |||
| return RET_OK; | |||
| } | |||
| int Conv2DINT8Coder::DoCode(CoderContext *const context) { | |||
| Collect(context, {"nnacl/int8/conv_int8.h", "nnacl/common_func.h", "nnacl/kernel/int8/conv_init_int8.h"}, | |||
| {"common_func.c", "pack.c", "conv_int8.c", "winograd_transform.c", "matmul_int8.c", "fixed_point.c", | |||
| "conv_init_int8.c"}); | |||
| // call the op function | |||
| nnacl::NNaclInt8Serializer code; | |||
| code.precision(kPrecision); | |||
| code.CodeFunction("memset", packed_input_, 0, packed_input_size_); | |||
| code.CodeFunction("memset", input_sum_, 0, input_sum_size_); | |||
| code.CodeFunction("memset", matmul_packed_input_, 0, matmul_packed_input_size_); | |||
| conv_param_->op_parameter_.thread_num_ = thread_num_; | |||
| conv_param_->thread_num_ = thread_num_; | |||
| code.CodeStruct("conv_param_", *conv_param_); | |||
| // code operator func | |||
| if (thread_num_ > 1) { | |||
| code.CodeFunction("memset", matmul_packed_input_, 0, matmul_packed_input_size_); | |||
| code.CodeBaseStruct("ConvOptInt8Args", "args", input_tensor_, packed_input_, matmul_packed_input_, packed_weight_, | |||
| bias_data_, output_tensor_, input_sum_, thread_num_s_, "(ConvParameter *)&conv_param_", | |||
| matmul_func_); | |||
| code.CodeFunction("ParallelLaunch", "THREAD_POOL_DEFAULT", "ConvInt8Run", "&args", "thread_num"); | |||
| } else { | |||
| if (target_ == kARM64) { | |||
| code << "if (GetSupportOptFlag()) {\n"; | |||
| code << "conv_param_.tile_num_ = " << 8 << ";\n"; | |||
| code << "} else {\n"; | |||
| code << "conv_param_.tile_num_ = " << 4 << ";\n"; | |||
| code << "}\n"; | |||
| code.CodeFunction("ConvInt8", input_tensor_, packed_input_, matmul_packed_input_, packed_weight_, bias_data_, | |||
| output_tensor_, filter_zp_ptr_, input_sum_, 0, "(ConvParameter *)&conv_param_", matmul_func_, | |||
| "GetSupportOptFlag()"); | |||
| } else { | |||
| code.CodeFunction("ConvInt8", input_tensor_, packed_input_, matmul_packed_input_, packed_weight_, bias_data_, | |||
| output_tensor_, filter_zp_ptr_, input_sum_, 0, "(ConvParameter *)&conv_param_", matmul_func_, | |||
| support_optimize_); | |||
| } | |||
| } | |||
| context->AppendCode(code.str()); | |||
| return RET_OK; | |||
| } | |||
| std::unique_ptr<OperatorCoder> CPUConv2DINT8CoderCreator(const std::vector<Tensor *> &in_tensors, | |||
| const std::vector<Tensor *> &out_tensors, | |||
| const Model::Node *node, size_t node_index, Target target) { | |||
| PrimitiveC *primitive_c = node->primitive_; | |||
| if (!primitive_c) { | |||
| return nullptr; | |||
| } | |||
| OpParameter *parameter = | |||
| PopulateRegistry::GetInstance()->GetParameterCreator((schema::PrimitiveType(primitive_c->Type())))(primitive_c); | |||
| if (parameter == nullptr) { | |||
| MS_LOG(ERROR) << "PopulateParameter return nullptr, type: " | |||
| << schema::EnumNamePrimitiveType((schema::PrimitiveType)(primitive_c->Type())); | |||
| return nullptr; | |||
| } | |||
| auto *conv_param = reinterpret_cast<ConvParameter *>(parameter); | |||
| int kernel_h = conv_param->kernel_h_; | |||
| int kernel_w = conv_param->kernel_w_; | |||
| int stride_h = conv_param->stride_h_; | |||
| int stride_w = conv_param->stride_w_; | |||
| int dilation_h = conv_param->dilation_h_; | |||
| int dilation_w = conv_param->dilation_w_; | |||
| free(parameter); | |||
| std::unique_ptr<OperatorCoder> coder; | |||
| if (kernel_h == 3 && kernel_w == 3 && stride_h == 1 && stride_w == 1 && dilation_h == 1 && dilation_w == 1) { | |||
| coder = CPUOpCoderCreator<Conv2D3x3Int8Coder>(in_tensors, out_tensors, node, node_index, target); | |||
| } else if (kernel_h == 1 && kernel_w == 1) { | |||
| coder = CPUOpCoderCreator<Conv2DINT8Coder>(in_tensors, out_tensors, node, node_index, target); | |||
| } else { | |||
| coder = CPUOpCoderCreator<Conv2DINT8Coder>(in_tensors, out_tensors, node, node_index, target); | |||
| } | |||
| if (coder == nullptr) { | |||
| MS_LOG(ERROR) << "create conv2d int8 coder failed"; | |||
| return nullptr; | |||
| } | |||
| return coder; | |||
| } | |||
| REG_OPERATOR_CODER(kX86, kNumberTypeInt8, PrimitiveType_Conv2D, CPUConv2DINT8CoderCreator) | |||
| REG_OPERATOR_CODER(kARM32A, kNumberTypeInt8, PrimitiveType_Conv2D, CPUConv2DINT8CoderCreator) | |||
| REG_OPERATOR_CODER(kARM64, kNumberTypeInt8, PrimitiveType_Conv2D, CPUConv2DINT8CoderCreator) | |||
| } // namespace mindspore::lite::micro::nnacl | |||
| @@ -0,0 +1,71 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_INT8_CODER_H_ | |||
| #define MINDSPORE_LITE_MICRO_CODER_OPCODERS_INT8_CODER_H_ | |||
| #include <string> | |||
| #include <memory> | |||
| #include <vector> | |||
| #include "micro/coder/opcoders/base/conv2d_base_coder.h" | |||
| #include "nnacl/conv_parameter.h" | |||
| #include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h" | |||
| namespace mindspore::lite::micro::nnacl { | |||
| class Conv2DINT8Coder final : public Conv2DBaseCoder { | |||
| public: | |||
| explicit Conv2DINT8Coder(const std::vector<Tensor *> &in_tensors, const std::vector<Tensor *> &out_tensors, | |||
| const Model::Node *node, size_t node_index, Target target) | |||
| : Conv2DBaseCoder(in_tensors, out_tensors, node, node_index, target) {} | |||
| int Prepare(CoderContext *const context) override; | |||
| int DoCode(CoderContext *const context) override; | |||
| ~Conv2DINT8Coder() override = default; | |||
| private: | |||
| int InitWeightBias(CoderContext *ctx); | |||
| void CheckSupportOptimize(); | |||
| int InitTmpBuffer(CoderContext *ctx); | |||
| int Resize(); | |||
| int8_t *packed_weight_{nullptr}; | |||
| int32_t *bias_data_{nullptr}; | |||
| int32_t *filter_zp_ptr_{nullptr}; | |||
| int thread_count_{1}; | |||
| int tile_num_{0}; | |||
| bool support_optimize_{true}; | |||
| bool filter_peroc_{false}; | |||
| size_t packed_input_size_{0}; | |||
| size_t input_sum_size_{0}; | |||
| size_t matmul_packed_input_size_{0}; | |||
| int8_t *packed_input_{nullptr}; | |||
| int32_t *input_sum_{nullptr}; | |||
| int8_t *matmul_packed_input_{nullptr}; | |||
| string matmul_func_; | |||
| std::function<int(nnacl::NNaclInt8Serializer &, const std::string &, const std::string &)> pack_weight_init_{nullptr}; | |||
| }; | |||
| } // namespace mindspore::lite::micro::nnacl | |||
| #endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_INT8_CODER_H_ | |||
| @@ -19,6 +19,47 @@ | |||
| #include "micro/coder/log.h" | |||
| namespace mindspore::lite::micro::nnacl { | |||
| void NNaclInt8Serializer::CodeStruct(const std::string &name, const ConvParameter &conv_parameter) { | |||
| const ConvQuantArg &quant_arg = conv_parameter.conv_quant_arg_; | |||
| std::string quant_arg_in = name + "_quant_arg_in"; | |||
| std::string quant_arg_w = name + "_quant_arg_w"; | |||
| std::string quant_arg_out = name + "_quant_arg_out"; | |||
| CodeArray(quant_arg_in, quant_arg.input_quant_args_, quant_arg.input_arg_num_, false); | |||
| CodeArray(quant_arg_w, quant_arg.filter_quant_args_, quant_arg.filter_arg_num_, false); | |||
| CodeArray(quant_arg_out, quant_arg.output_quant_args_, quant_arg.output_arg_num_, false); | |||
| std::string real_multiplier = name + "_real_multiplier"; | |||
| std::string left_shift = name + "_left_shift"; | |||
| std::string right_shift = name + "_right_shift"; | |||
| std::string quant_multiplier = name + "_quant_multiplier"; | |||
| CodeArray(real_multiplier, quant_arg.real_multiplier_, quant_arg.filter_arg_num_, false); | |||
| CodeArray(left_shift, quant_arg.left_shift_, quant_arg.filter_arg_num_, false); | |||
| CodeArray(right_shift, quant_arg.right_shift_, quant_arg.filter_arg_num_, false); | |||
| CodeArray(quant_multiplier, quant_arg.quant_multiplier_, quant_arg.filter_arg_num_, false); | |||
| std::string out_act_min = name + "_out_act_min"; | |||
| std::string out_act_max = name + "_out_act_max"; | |||
| CodeArray(out_act_min, quant_arg.out_act_min_, 1, false); | |||
| CodeArray(out_act_max, quant_arg.out_act_max_, 1, false); | |||
| std::string conv_quant_arg = name + "_conv_quant_arg"; | |||
| CodeBaseStruct("ConvQuantArg", conv_quant_arg, quant_arg.round_mode_, quant_arg.quant_multiplier_mode_, quant_arg_in, | |||
| quant_arg_w, quant_arg_out, real_multiplier, left_shift, right_shift, quant_multiplier, out_act_min, | |||
| out_act_max, quant_arg.input_arg_num_, quant_arg.filter_arg_num_, quant_arg.output_arg_num_, | |||
| quant_arg.per_channel_); | |||
| CodeBaseStruct( | |||
| "ConvParameter", name, conv_parameter.op_parameter_, conv_quant_arg, conv_parameter.kernel_h_, | |||
| conv_parameter.kernel_w_, conv_parameter.stride_h_, conv_parameter.stride_w_, conv_parameter.dilation_h_, | |||
| conv_parameter.dilation_w_, conv_parameter.pad_u_, conv_parameter.pad_d_, conv_parameter.pad_l_, | |||
| conv_parameter.pad_r_, conv_parameter.group_, conv_parameter.tile_num_, conv_parameter.input_batch_, | |||
| conv_parameter.input_h_, conv_parameter.input_w_, conv_parameter.input_channel_, conv_parameter.output_batch_, | |||
| conv_parameter.output_h_, conv_parameter.output_w_, conv_parameter.output_channel_, conv_parameter.thread_num_, | |||
| conv_parameter.input_unit_, conv_parameter.output_unit_, conv_parameter.pad_mode_, conv_parameter.act_type_); | |||
| } | |||
| void NNaclInt8Serializer::CodeStruct(const std::string &name, const ArithmeticParameter &arithmetic_parameter) { | |||
| CodeBaseStruct("ArithmeticParameter", name, arithmetic_parameter.op_parameter_, arithmetic_parameter.broadcasting_, | |||
| arithmetic_parameter.ndim_, arithmetic_parameter.activation_type_, | |||
| @@ -33,7 +33,7 @@ namespace mindspore::lite::micro::nnacl { | |||
| class NNaclInt8Serializer : public Serializer { | |||
| public: | |||
| NNaclInt8Serializer() = default; | |||
| ~NNaclInt8Serializer() = default; | |||
| ~NNaclInt8Serializer() override = default; | |||
| void CodeStruct(const std::string &name, const ConvParameter &conv_parameter); | |||
| void CodeStruct(const std::string &name, const MatMulParameter &matmul_parameter); | |||
| void CodeStruct(const std::string &name, const AddQuantParameter &add_quant_parameter); | |||
| @@ -47,6 +47,18 @@ inline std::ostream &operator<<(std::ostream &code, RoundMode round_mode) { | |||
| return code; | |||
| } | |||
| inline std::ostream &operator<<(std::ostream &code, RoundingMode rounding_mode) { | |||
| code << "(RoundingMode)" | |||
| << "(" << static_cast<int>(rounding_mode) << ")"; | |||
| return code; | |||
| } | |||
| inline std::ostream &operator<<(std::ostream &code, PadMode pad_mode) { | |||
| code << "(PadMode)" | |||
| << "(" << static_cast<int>(pad_mode) << ")"; | |||
| return code; | |||
| } | |||
| inline std::ostream &operator<<(std::ostream &code, ActType act_type) { | |||
| code << "(ActType)" | |||
| << "(" << static_cast<int>(act_type) << ")"; | |||
| @@ -0,0 +1,88 @@ | |||
| /* | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "wrapper/int8/conv_init_int8.h" | |||
| #include <memory.h> | |||
| #include "nnacl/op_base.h" | |||
| #include "nnacl/int8/matmul_int8.h" | |||
| #include "nnacl/errorcode.h" | |||
| int ConvInit(int8_t *origin_weight, const int32_t *ori_bias, const int32_t *filter_quant_zps, int kernel_h, | |||
| int kernel_w, int input_channel, int output_channel, int32_t input_zp, bool filter_peroc, | |||
| bool support_optimize, int8_t **packed_weight, int32_t **bias_data) { | |||
| int8_t *packed_weight_ = NULL; | |||
| int32_t *bias_data_ = NULL; | |||
| int kernel_plane = kernel_h * kernel_w; | |||
| int up_round_deep; | |||
| int up_round_oc; | |||
| #ifdef ENABLE_ARM32 | |||
| up_round_oc = UP_ROUND(output_channel, C2NUM); | |||
| up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM); | |||
| #else | |||
| if (support_optimize) { | |||
| up_round_oc = UP_ROUND(output_channel, C8NUM); | |||
| up_round_deep = UP_ROUND(kernel_plane * input_channel, C4NUM); | |||
| } else { | |||
| up_round_oc = UP_ROUND(output_channel, C4NUM); | |||
| up_round_deep = UP_ROUND(kernel_plane * input_channel, C16NUM); | |||
| } | |||
| #endif | |||
| int pack_weight_size = up_round_oc * up_round_deep; | |||
| size_t bias_size = up_round_oc * sizeof(int32_t); | |||
| // init weight | |||
| packed_weight_ = (int8_t *)(malloc(pack_weight_size)); | |||
| if (packed_weight_ == NULL) { | |||
| return NNACL_ERR; | |||
| } | |||
| memset(packed_weight_, 0, pack_weight_size); | |||
| #ifdef ENABLE_ARM32 | |||
| RowMajor2Row2x16MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_plane); | |||
| #else | |||
| if (support_optimize) { | |||
| RowMajor2Row8x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_plane); | |||
| } else { | |||
| RowMajor2Row16x4MajorInt8(origin_weight, packed_weight_, output_channel, input_channel * kernel_plane); | |||
| } | |||
| #endif | |||
| // init bias | |||
| bias_data_ = (int32_t *)(malloc(bias_size)); | |||
| if (bias_data_ == NULL) { | |||
| free(packed_weight_); | |||
| return NNACL_ERR; | |||
| } | |||
| memset(bias_data_, 0, bias_size); | |||
| if (ori_bias != NULL) { | |||
| memcpy(bias_data_, ori_bias, output_channel * sizeof(int32_t)); | |||
| } | |||
| for (int oc = 0; oc < output_channel; oc++) { | |||
| int32_t filter_zp = filter_quant_zps[0]; | |||
| if (filter_peroc) { | |||
| filter_zp = filter_quant_zps[oc]; | |||
| } | |||
| int32_t weight_sum_value = up_round_deep * filter_zp; | |||
| for (int i = 0; i < kernel_plane * input_channel; i++) { | |||
| weight_sum_value += origin_weight[oc * kernel_plane * input_channel + i] - filter_zp; | |||
| } | |||
| bias_data_[oc] += filter_zp * input_zp * up_round_deep - weight_sum_value * input_zp; | |||
| } | |||
| *packed_weight = packed_weight_; | |||
| *bias_data = bias_data_; | |||
| return NNACL_OK; | |||
| } | |||
| @@ -0,0 +1,26 @@ | |||
| /* | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_MICRO_INT8_CONV_INIT_H_ | |||
| #define MINDSPORE_LITE_MICRO_INT8_CONV_INIT_H_ | |||
| #include <stdint.h> | |||
| #include <stdbool.h> | |||
| int ConvInit(int8_t *origin_weight, const int32_t *ori_bias, const int32_t *filter_quant_zps, int kernel_h, | |||
| int kernel_w, int input_channel, int output_channel, int32_t input_zp, bool filter_peroc, | |||
| bool support_optimize, int8_t **packed_weight, int32_t **bias_data); | |||
| #endif // MINDSPORE_LITE_MICRO_INT8_CONV_INIT_H_ | |||