| @@ -135,6 +135,7 @@ REGISTER(GatherV2PInfo); | |||
| REGISTER(EmbeddingLookupInfo); | |||
| REGISTER(TileInfo); | |||
| REGISTER(StridedSliceInfo); | |||
| REGISTER(DropoutInfo); | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -20,6 +20,8 @@ | |||
| #include <memory> | |||
| #include <vector> | |||
| #include <utility> | |||
| #include <functional> | |||
| #include <numeric> | |||
| #include "ir/value.h" | |||
| #include "frontend/parallel/auto_parallel/costmodel.h" | |||
| @@ -54,6 +56,29 @@ Status Activation::CheckStrategy(const StrategyPtr &strategy) { | |||
| return SUCCESS; | |||
| } | |||
| Status DropoutInfo::CheckStrategy(const StrategyPtr &strategy) { | |||
| if (CheckStrategyValue(strategy, inputs_shape_, is_auto_parallel_) != SUCCESS) { | |||
| if (is_auto_parallel_) { | |||
| MS_LOG(DEBUG) << name_ << " : Invalid strategy."; | |||
| } else { | |||
| MS_LOG(ERROR) << name_ << " : Invalid strategy."; | |||
| } | |||
| return FAILED; | |||
| } | |||
| // dropout don't support repeated calculation | |||
| CheckGlobalDeviceManager(); | |||
| auto input_strategy = strategy->GetInputDim().at(0); | |||
| size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size(); | |||
| auto product_p = std::accumulate(input_strategy.begin(), input_strategy.end(), 1, std::multiplies<int>()); | |||
| if (IntToSize(product_p) != dev_num) { | |||
| MS_LOG(ERROR) << name_ << ": Invalid strategy. Don't support repeated calc."; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status ActivationInfo::GetAttrs() { | |||
| if (attrs_.size() < ACTIVATION_ATTR_SIZE) { | |||
| MS_LOG(ERROR) << name_ << " : The size of attrs small than 1."; | |||
| @@ -120,6 +145,27 @@ Status Activation::GenerateStrategies(int32_t stage_id) { | |||
| return SUCCESS; | |||
| } | |||
| Status DropoutInfo::GenerateStrategies(int32_t stage_id) { | |||
| is_auto_parallel_ = true; | |||
| Shape input0_split(inputs_shape_[0].size(), 1); | |||
| Shapes splittable_inputs = {input0_split}; | |||
| std::vector<StrategyPtr> sp_vector; | |||
| if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << " : Generate strategies for independent inputs() failed."; | |||
| return FAILED; | |||
| } | |||
| size_t success = 0; | |||
| for (auto &sp : sp_vector) { | |||
| if (SetCostUnderStrategy(sp) == SUCCESS) { | |||
| success++; | |||
| MS_LOG(INFO) << name_ << " : Successfully generated " << success << " strategy"; | |||
| PrintStrategy(sp); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status Softmax::CheckStrategy(const StrategyPtr &strategy) { | |||
| if (CheckStrategyValue(strategy, inputs_shape_, is_auto_parallel_) != SUCCESS) { | |||
| if (is_auto_parallel_) { | |||
| @@ -334,6 +380,32 @@ Status ActivationBase::InferTensorInfo() { | |||
| return SUCCESS; | |||
| } | |||
| Status DropoutInfo::InferTensorInfo() { | |||
| // infer tensor shape | |||
| Shape input_shape = inputs_shape_.at(0); | |||
| // infer slice shape | |||
| Shapes inputs_slice_shape, outputs_slice_shape; | |||
| Strategys inputs_strategy = strategy_->GetInputDim(); | |||
| // dropout has two outputs | |||
| Strategys outputs_strategy = {inputs_strategy.at(0), inputs_strategy.at(0)}; | |||
| if (InferSliceShape(inputs_strategy, outputs_strategy, &inputs_slice_shape, &outputs_slice_shape) != SUCCESS) { | |||
| return FAILED; | |||
| } | |||
| Shape input_slice_shape = inputs_slice_shape.at(0); | |||
| TensorLayout input_tensor_layout; | |||
| if (input_tensor_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], input_shape) != SUCCESS) { | |||
| return FAILED; | |||
| } | |||
| TensorInfo input_tensor_info(input_tensor_layout, input_shape, input_slice_shape); | |||
| inputs_tensor_info_.push_back(input_tensor_info); | |||
| // the two outputs of dropout all have the same tensor_info as input | |||
| outputs_tensor_info_.push_back(input_tensor_info); | |||
| outputs_tensor_info_.push_back(input_tensor_info); | |||
| return SUCCESS; | |||
| } | |||
| Status ActivationBase::Init(const StrategyPtr &strategy) { | |||
| if (InitWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << " : Init failed."; | |||
| @@ -219,6 +219,20 @@ class SigmoidInfo : public ActivationOther { | |||
| : ActivationOther(name, inputs_shape, outputs_shape, attrs) {} | |||
| ~SigmoidInfo() override = default; | |||
| }; | |||
| class DropoutInfo : public ActivationOther { | |||
| public: | |||
| DropoutInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||
| const PrimitiveAttrs &attrs) | |||
| : ActivationOther(name, inputs_shape, outputs_shape, attrs) {} | |||
| ~DropoutInfo() override = default; | |||
| Status GenerateStrategies(int32_t stage_id) override; | |||
| protected: | |||
| Status CheckStrategy(const StrategyPtr &strategy) override; | |||
| Status GetAttrs() override { return SUCCESS; } | |||
| Status InferTensorInfo() override; | |||
| }; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_ACTIVATION_INFO_H_ | |||
| @@ -238,6 +238,7 @@ constexpr char UNSORTEF_SEGMENT_PRODD[] = "UnsortedSegmentProdD"; | |||
| constexpr char DEPTHWISE_CONV2D_NATIVE[] = "DepthwiseConv2dNative"; | |||
| constexpr char DEPTHWISE_CONV2D[] = "DepthwiseConv2D"; | |||
| constexpr char ADD[] = "Add"; | |||
| constexpr char DROPOUT[] = "Dropout"; | |||
| constexpr char KStridedSlice[] = "StridedSlice"; | |||
| // Parallel don't care | |||
| @@ -256,7 +256,7 @@ bool IsSplittableOperator(const std::string &op_name) { | |||
| REDUCE_MAX, REDUCE_MIN, ARGMAXWITHVALUE, ARGMINWITHVALUE, REDUCE_SUM, CONV2D, FUSE_BATCH_NORM, POOLING, | |||
| MAX_POOL_WITH_ARGMAX, SIMPLE_MEAN, FLATTEN, BATCH_NORM, LAYER_NORM, BIAS_ADD, ASSIGN_SUB, COS, ACOS, EXP, | |||
| LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, | |||
| STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, | |||
| STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT, | |||
| SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS}; | |||
| // clang-format on | |||
| @@ -0,0 +1,99 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| import numpy as np | |||
| import mindspore as ms | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore import context | |||
| from mindspore.common.api import _executor | |||
| from mindspore.ops import composite as C | |||
| from mindspore.ops import operations as P | |||
| from tests.ut.python.ops.test_math_ops import VirtualLoss | |||
| class NetWithLoss(nn.Cell): | |||
| def __init__(self, network): | |||
| super(NetWithLoss, self).__init__() | |||
| self.loss = VirtualLoss() | |||
| self.network = network | |||
| def construct(self, x, y): | |||
| predict = self.network(x, y) | |||
| return self.loss(predict) | |||
| class GradWrap(nn.Cell): | |||
| def __init__(self, network): | |||
| super(GradWrap, self).__init__() | |||
| self.network = network | |||
| def construct(self, x, y): | |||
| return C.grad_all(self.network)(x, y) | |||
| class Net(nn.Cell): | |||
| def __init__(self, strategy1=None, strategy2=None): | |||
| super().__init__() | |||
| self.dropout = P.Dropout(keep_prob=0.6).set_strategy(strategy1) | |||
| self.matmul = P.MatMul().set_strategy(strategy2) | |||
| def construct(self, x, y): | |||
| out = self.matmul(x, y) | |||
| out, _ = self.dropout(out) | |||
| return out | |||
| def test_dropout_semi_auto(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") | |||
| net = GradWrap(NetWithLoss(Net())) | |||
| net.set_auto_parallel() | |||
| x = Tensor(np.ones([64, 32]), dtype=ms.float32) | |||
| y = Tensor(np.ones([32, 128]), dtype=ms.float32) | |||
| _executor.compile(net, x, y) | |||
| def test_dropout_semi_auto2(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") | |||
| strategy1 = ((8, 1),) | |||
| strategy2 = ((4, 2), (2, 1)) | |||
| net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | |||
| net.set_auto_parallel() | |||
| x = Tensor(np.ones([64, 32]), dtype=ms.float32) | |||
| y = Tensor(np.ones([32, 128]), dtype=ms.float32) | |||
| _executor.compile(net, x, y) | |||
| def test_dropout_semi_auto3(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="semi_auto_parallel") | |||
| strategy1 = ((2, 4),) | |||
| strategy2 = ((4, 2), (2, 1)) | |||
| net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | |||
| net.set_auto_parallel() | |||
| x = Tensor(np.ones([64, 32]), dtype=ms.float32) | |||
| y = Tensor(np.ones([32, 128]), dtype=ms.float32) | |||
| _executor.compile(net, x, y) | |||
| def test_dropout_auto(): | |||
| context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="auto_parallel") | |||
| net = GradWrap(NetWithLoss(Net())) | |||
| net.set_auto_parallel() | |||
| x = Tensor(np.ones([64, 32]), dtype=ms.float32) | |||
| y = Tensor(np.ones([32, 128]), dtype=ms.float32) | |||
| _executor.compile(net, x, y) | |||