lintfix Adding Dynamic_shape_dependstags/v1.1.0
| @@ -216,7 +216,7 @@ AbstractBasePtr InferImplUnsortedSegmentSum(const AnalysisEnginePtr &, const Pri | |||
| // check if dynamic shape | |||
| bool x_is_dyn = (!x->shape()->min_shape().empty() && !x->shape()->max_shape().empty()); | |||
| bool ids_is_dyn = (!segment_ids->shape()->min_shape().empty() && !segment_ids->shape()->max_shape().empty()); | |||
| bool op_is_dynamic = x_is_dyn && ids_is_dyn; | |||
| bool op_is_dynamic = x_is_dyn || ids_is_dyn; | |||
| auto x_shape = x->shape()->shape(); | |||
| ShapeVector shape; | |||
| int64_t num_segments_value = 0; | |||
| @@ -297,7 +297,7 @@ AbstractBasePtr InferImplUnsortedSegmentMax(const AnalysisEnginePtr &, const Pri | |||
| // check if dynamic shape | |||
| bool x_is_dyn = (!x->shape()->min_shape().empty() && !x->shape()->max_shape().empty()); | |||
| bool ids_is_dyn = (!segment_ids->shape()->min_shape().empty() && !segment_ids->shape()->max_shape().empty()); | |||
| bool op_is_dynamic = x_is_dyn && ids_is_dyn; | |||
| bool op_is_dynamic = x_is_dyn || ids_is_dyn; | |||
| auto x_shape = x->shape()->shape(); | |||
| ShapeVector shape; | |||
| int64_t num_segments_value = 0; | |||
| @@ -374,7 +374,7 @@ AbstractBasePtr InferImplUnsortedSegmentMin(const AnalysisEnginePtr &, const Pri | |||
| // check if dynamic shape | |||
| bool x_is_dyn = (!x->shape()->min_shape().empty() && !x->shape()->max_shape().empty()); | |||
| bool ids_is_dyn = (!segment_ids->shape()->min_shape().empty() && !segment_ids->shape()->max_shape().empty()); | |||
| bool op_is_dynamic = x_is_dyn && ids_is_dyn; | |||
| bool op_is_dynamic = x_is_dyn || ids_is_dyn; | |||
| auto x_shape = x->shape()->shape(); | |||
| ShapeVector shape; | |||
| int64_t num_segments_value = 0; | |||
| @@ -1917,6 +1917,7 @@ class UnsortedSegmentMin(PrimitiveWithCheck): | |||
| def __init__(self): | |||
| """Initialize UnsortedSegmentMin""" | |||
| self.init_prim_io_names(inputs=['x', 'segment_ids', 'num_segments'], outputs=['y']) | |||
| self.add_prim_attr("dynamic_shape_depends", [2]) | |||
| def __check__(self, x, segment_ids, num_segments): | |||
| segment_ids_shape = segment_ids['shape'] | |||
| @@ -941,22 +941,32 @@ def test_gather2(): | |||
| # Dynamic Shape testing ahead | |||
| class GatherNetDynamic1(nn.Cell): | |||
| def __init__(self): | |||
| super(GatherNetDynamic1, self).__init__() | |||
| class GatherNetDynamic(nn.Cell): | |||
| def __init__(self, axis=0, dyn_a=True, dyn_b=True): | |||
| super(GatherNetDynamic, self).__init__() | |||
| self.gather = P.GatherV2() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| self.to_dyn_1 = dyn_a | |||
| self.to_dyn_2 = dyn_b | |||
| self.axis = axis | |||
| def construct(self, x, indices): | |||
| # Testing only second input dynamic | |||
| indices_dyn = self.gpu_convert_to_dynamic_shape(indices) | |||
| return self.gather(x, indices_dyn, 0) | |||
| # testing selective inputs being dynamic | |||
| if self.to_dyn_1: | |||
| x = self.gpu_convert_to_dynamic_shape(x) | |||
| if self.to_dyn_2: | |||
| indices = self.gpu_convert_to_dynamic_shape(indices) | |||
| return self.gather(x, indices, self.axis) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gather_dynamic_1(): | |||
| def test_gatherV2_dyn_ab(): | |||
| """ | |||
| Tests for Dynamic shape with both inputs dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| gather = GatherNetDynamic() | |||
| x = Tensor(np.array([[4., 5., 4., 1., 5.,], | |||
| [4., 9., 5., 6., 4.,], | |||
| [9., 8., 4., 3., 6.,], | |||
| @@ -968,14 +978,10 @@ def test_gather_dynamic_1(): | |||
| [3., 7., 2., 7., 4.,], | |||
| [4., 2., 8., 2., 9.,]] | |||
| ).astype(np.float32)) | |||
| indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32)) | |||
| expect = np.array([[[0., 0., 0., 0., 0.], | |||
| [4., 9., 5., 6., 4.], | |||
| [0., 0., 0., 0., 0.]]]) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| gather = GatherNetDynamic1() | |||
| output = gather(x, indices) | |||
| error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| @@ -983,21 +989,44 @@ def test_gather_dynamic_1(): | |||
| assert np.all(-diff < error) | |||
| class GatherNetDynamic2(nn.Cell): | |||
| def __init__(self): | |||
| super(GatherNetDynamic2, self).__init__() | |||
| self.gather = P.GatherV2() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| def construct(self, x, indices): | |||
| # Testing only first input dynamic | |||
| x_dyn = self.gpu_convert_to_dynamic_shape(x) | |||
| return self.gather(x_dyn, indices, -1) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gather_dynamic_2(): | |||
| def test_gatherV2_dyn_a(): | |||
| """ | |||
| Tests for Dynamic shape with only first input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| gather = GatherNetDynamic(-1, True, False) | |||
| # test 1 | |||
| x = Tensor(np.array([[4., 5., 4., 1., 5.,], | |||
| [4., 9., 5., 6., 4.,], | |||
| [9., 8., 4., 3., 6.,], | |||
| [0., 4., 2., 2., 8.,], | |||
| [1., 8., 6., 2., 8.,], | |||
| [8., 1., 9., 7., 3.,], | |||
| [7., 9., 2., 5., 7.,], | |||
| [9., 8., 6., 8., 5.,], | |||
| [3., 7., 2., 7., 4.,], | |||
| [4., 2., 8., 2., 9.,]] | |||
| ).astype(np.float32)) | |||
| indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32)) | |||
| expect = np.array([[[0., 5., 0.]], | |||
| [[0., 9., 0.]], | |||
| [[0., 8., 0.]], | |||
| [[0., 4., 0.]], | |||
| [[0., 8., 0.]], | |||
| [[0., 1., 0.]], | |||
| [[0., 9., 0.]], | |||
| [[0., 8., 0.]], | |||
| [[0., 7., 0.]], | |||
| [[0., 2., 0.]]]).astype(np.float32) | |||
| output = gather(x, indices) | |||
| error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| # test 2 | |||
| x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.float32).reshape(2, 3, 4, 5)) | |||
| indices = Tensor(np.array([1, 3, 4], dtype='i4')) | |||
| expect = np.array([[[[1., 3., 4.], | |||
| @@ -1029,8 +1058,6 @@ def test_gather_dynamic_2(): | |||
| [106., 108., 109.], | |||
| [111., 113., 114.], | |||
| [116., 118., 119.]]]]) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| gather = GatherNetDynamic2() | |||
| output = gather(x, indices) | |||
| error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| @@ -1038,56 +1065,70 @@ def test_gather_dynamic_2(): | |||
| assert np.all(-diff < error) | |||
| class GatherNetDynamic3(nn.Cell): | |||
| def __init__(self): | |||
| super(GatherNetDynamic3, self).__init__() | |||
| self.gather = P.GatherV2() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| def construct(self, x, indices): | |||
| # Testing both inputs dynamic shapes | |||
| x_dyn = self.gpu_convert_to_dynamic_shape(x) | |||
| indices_dyn = self.gpu_convert_to_dynamic_shape(indices) | |||
| return self.gather(x_dyn, indices_dyn, -1) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_gather_dynamic_3(): | |||
| def test_gatherV2_dyn_b(): | |||
| """ | |||
| Tests for Dynamic shape with only second input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| gather = GatherNetDynamic(-1, False, True) | |||
| # test 1 | |||
| x = Tensor(np.array([[4., 5., 4., 1., 5.,], | |||
| [4., 9., 5., 6., 4.,], | |||
| [9., 8., 4., 3., 6.,], | |||
| [0., 4., 2., 2., 8.,], | |||
| [1., 8., 6., 2., 8.,], | |||
| [8., 1., 9., 7., 3.,], | |||
| [7., 9., 2., 5., 7.,], | |||
| [9., 8., 6., 8., 5.,], | |||
| [3., 7., 2., 7., 4.,], | |||
| [4., 2., 8., 2., 9.,]] | |||
| ).astype(np.float32)) | |||
| indices = Tensor(np.array([[4000, 1, 300000]]).astype(np.int32)) | |||
| expect = np.array([[[0., 5., 0.]], | |||
| [[0., 9., 0.]], | |||
| [[0., 8., 0.]], | |||
| [[0., 4., 0.]], | |||
| [[0., 8., 0.]], | |||
| [[0., 1., 0.]], | |||
| [[0., 9., 0.]], | |||
| [[0., 8., 0.]], | |||
| [[0., 7., 0.]], | |||
| [[0., 2., 0.]]]).astype(np.float32) | |||
| output = gather(x, indices) | |||
| error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| # test 2 | |||
| x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=np.float32).reshape(2, 3, 4, 5)) | |||
| indices = Tensor(np.array([1, 3, 4], dtype='i4')) | |||
| expect = np.array([[[[1., 3., 4.], | |||
| [6., 8., 9.], | |||
| [11., 13., 14.], | |||
| [16., 18., 19.]], | |||
| [[21., 23., 24.], | |||
| [26., 28., 29.], | |||
| [31., 33., 34.], | |||
| [36., 38., 39.]], | |||
| [[41., 43., 44.], | |||
| [46., 48., 49.], | |||
| [51., 53., 54.], | |||
| [56., 58., 59.]]], | |||
| [[[61., 63., 64.], | |||
| [66., 68., 69.], | |||
| [71., 73., 74.], | |||
| [76., 78., 79.]], | |||
| [[81., 83., 84.], | |||
| [86., 88., 89.], | |||
| [91., 93., 94.], | |||
| [96., 98., 99.]], | |||
| [[101., 103., 104.], | |||
| [106., 108., 109.], | |||
| [111., 113., 114.], | |||
| [116., 118., 119.]]]]) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| gather = GatherNetDynamic3() | |||
| output = gather(x, indices) | |||
| error = np.ones(shape=output.asnumpy().shape) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| @@ -204,27 +204,36 @@ def test_3d_single_init(): | |||
| [-3.4028235e+38, -3.4028235e+38, -3.4028235e+38]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| # For testing Dynamic Shape operation | |||
| class UnsortedSegmentMaxDynNet(nn.Cell): | |||
| def __init__(self, num_segments): | |||
| def __init__(self, num_segments, dyn_a=True, dyn_b=True): | |||
| super(UnsortedSegmentMaxDynNet, self).__init__() | |||
| self.unsorted_segment_max = P.UnsortedSegmentMax() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| self.num_segments = num_segments | |||
| self.to_dyn_1 = dyn_a | |||
| self.to_dyn_2 = dyn_b | |||
| def construct(self, data, ids): | |||
| dyn_data = self.gpu_convert_to_dynamic_shape(data) | |||
| dyn_ids = self.gpu_convert_to_dynamic_shape(ids) | |||
| return self.unsorted_segment_max(dyn_data, dyn_ids, self.num_segments) | |||
| # testing selective inputs being dynamic | |||
| if self.to_dyn_1: | |||
| data = self.gpu_convert_to_dynamic_shape(data) | |||
| if self.to_dyn_2: | |||
| ids = self.gpu_convert_to_dynamic_shape(ids) | |||
| return self.unsorted_segment_max(data, ids, self.num_segments) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_3d_float32_dyn(): | |||
| def test_3d_float32_dyn_ab(): | |||
| """ | |||
| Tests for Dynamic shape with both inputs dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| num_segments = 4 | |||
| net = UnsortedSegmentMaxDynNet(num_segments) | |||
| # input 1 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| @@ -251,16 +260,21 @@ def test_3d_float32_dyn(): | |||
| [1.2000000e+01, 1.3000000e+01, 1.4000000e+01]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_3d_single_init_dyn(): | |||
| def test_3d_single_init_dyn_a(): | |||
| """ | |||
| Tests for Dynamic shape with first input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| # test 1 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| num_segments = 4 | |||
| net = UnsortedSegmentMaxDynNet(num_segments) | |||
| net = UnsortedSegmentMaxDynNet(num_segments, True, False) | |||
| output = net(input_x, segment_ids).asnumpy() | |||
| expect = np.array([[[1.5000000e+01, 1.6000000e+01, 1.7000000e+01], | |||
| [1.8000000e+01, 1.9000000e+01, 2.0000000e+01], | |||
| @@ -283,8 +297,79 @@ def test_3d_single_init_dyn(): | |||
| [9.0000000e+00, 1.0000000e+01, 1.1000000e+01], | |||
| [1.2000000e+01, 1.3000000e+01, 1.4000000e+01]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| # test 2 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 7 * 2, dtype=np.float32).reshape(4, 7, 2), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| output = net(input_x, segment_ids).asnumpy() | |||
| expect = np.array([[[1.4000000e+01, 1.5000000e+01], | |||
| [1.6000000e+01, 1.7000000e+01], | |||
| [1.8000000e+01, 1.9000000e+01], | |||
| [2.0000000e+01, 2.1000000e+01], | |||
| [2.2000000e+01, 2.3000000e+01], | |||
| [2.4000000e+01, 2.5000000e+01], | |||
| [2.6000000e+01, 2.7000000e+01]], | |||
| [[2.8000000e+01, 2.9000000e+01], | |||
| [3.0000000e+01, 3.1000000e+01], | |||
| [3.2000000e+01, 3.3000000e+01], | |||
| [3.4000000e+01, 3.5000000e+01], | |||
| [3.6000000e+01, 3.7000000e+01], | |||
| [3.8000000e+01, 3.9000000e+01], | |||
| [4.0000000e+01, 4.1000000e+01]], | |||
| [[-3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38]], | |||
| [[0.0000000e+00, 1.0000000e+00], | |||
| [2.0000000e+00, 3.0000000e+00], | |||
| [4.0000000e+00, 5.0000000e+00], | |||
| [6.0000000e+00, 7.0000000e+00], | |||
| [8.0000000e+00, 9.0000000e+00], | |||
| [1.0000000e+01, 1.1000000e+01], | |||
| [1.2000000e+01, 1.3000000e+01]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| # changing the input shape here for same net | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_3d_single_init_dyn_b(): | |||
| """ | |||
| Tests for Dynamic shape with second input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| # input 1 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| num_segments = 4 | |||
| net = UnsortedSegmentMaxDynNet(num_segments, False, True) | |||
| output = net(input_x, segment_ids).asnumpy() | |||
| expect = np.array([[[1.5000000e+01, 1.6000000e+01, 1.7000000e+01], | |||
| [1.8000000e+01, 1.9000000e+01, 2.0000000e+01], | |||
| [2.1000000e+01, 2.2000000e+01, 2.3000000e+01], | |||
| [2.4000000e+01, 2.5000000e+01, 2.6000000e+01], | |||
| [2.7000000e+01, 2.8000000e+01, 2.9000000e+01]], | |||
| [[3.0000000e+01, 3.1000000e+01, 3.2000000e+01], | |||
| [3.3000000e+01, 3.4000000e+01, 3.5000000e+01], | |||
| [3.6000000e+01, 3.7000000e+01, 3.8000000e+01], | |||
| [3.9000000e+01, 4.0000000e+01, 4.1000000e+01], | |||
| [4.2000000e+01, 4.3000000e+01, 4.4000000e+01]], | |||
| [[-3.4028235e+38, -3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38, -3.4028235e+38], | |||
| [-3.4028235e+38, -3.4028235e+38, -3.4028235e+38]], | |||
| [[0.0000000e+00, 1.0000000e+00, 2.0000000e+00], | |||
| [3.0000000e+00, 4.0000000e+00, 5.0000000e+00], | |||
| [6.0000000e+00, 7.0000000e+00, 8.0000000e+00], | |||
| [9.0000000e+00, 1.0000000e+01, 1.1000000e+01], | |||
| [1.2000000e+01, 1.3000000e+01, 1.4000000e+01]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| # input 2 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 7 * 2, dtype=np.float32).reshape(4, 7, 2), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| @@ -207,22 +207,29 @@ def test_3d_single_init(): | |||
| # For testing Dynamic Shape operation | |||
| class UnsortedSegmentMinDynNet(nn.Cell): | |||
| def __init__(self, num_segments): | |||
| def __init__(self, num_segments, dyn_a=True, dyn_b=True): | |||
| super(UnsortedSegmentMinDynNet, self).__init__() | |||
| self.unsorted_segment_min = P.UnsortedSegmentMin() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| self.num_segments = num_segments | |||
| self.to_dyn_1 = dyn_a | |||
| self.to_dyn_2 = dyn_b | |||
| def construct(self, data, ids): | |||
| dyn_data = self.gpu_convert_to_dynamic_shape(data) | |||
| dyn_ids = self.gpu_convert_to_dynamic_shape(ids) | |||
| return self.unsorted_segment_min(dyn_data, dyn_ids, self.num_segments) | |||
| # testing selective inputs being dynamic | |||
| if self.to_dyn_1: | |||
| data = self.gpu_convert_to_dynamic_shape(data) | |||
| if self.to_dyn_2: | |||
| ids = self.gpu_convert_to_dynamic_shape(ids) | |||
| return self.unsorted_segment_min(data, ids, self.num_segments) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_3d_float32_dyn(): | |||
| def test_3d_float32_ab_dyn(): | |||
| """ | |||
| Test for Dynamic shape with both inputs dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| input_x = Tensor(np.arange( | |||
| 4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3), dtype=mindspore.float32) | |||
| @@ -251,11 +258,14 @@ def test_3d_float32_dyn(): | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_3d_single_init_dyn(): | |||
| def test_3d_float32_a_dyn(): | |||
| """ | |||
| Tests for Dynamic shape with only first input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| num_segments = 4 | |||
| net = UnsortedSegmentMinDynNet(num_segments) | |||
| net = UnsortedSegmentMinDynNet(num_segments, True, False) | |||
| # test 1 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| @@ -281,8 +291,79 @@ def test_3d_single_init_dyn(): | |||
| [9.0000000e+00, 1.0000000e+01, 1.1000000e+01], | |||
| [1.2000000e+01, 1.3000000e+01, 1.4000000e+01]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| # test 2 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 7 * 2, dtype=np.float32).reshape(4, 7, 2), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| output = net(input_x, segment_ids).asnumpy() | |||
| expect = np.array([[[1.4000000e+01, 1.5000000e+01], | |||
| [1.6000000e+01, 1.7000000e+01], | |||
| [1.8000000e+01, 1.9000000e+01], | |||
| [2.0000000e+01, 2.1000000e+01], | |||
| [2.2000000e+01, 2.3000000e+01], | |||
| [2.4000000e+01, 2.5000000e+01], | |||
| [2.6000000e+01, 2.7000000e+01]], | |||
| [[2.8000000e+01, 2.9000000e+01], | |||
| [3.0000000e+01, 3.1000000e+01], | |||
| [3.2000000e+01, 3.3000000e+01], | |||
| [3.4000000e+01, 3.5000000e+01], | |||
| [3.6000000e+01, 3.7000000e+01], | |||
| [3.8000000e+01, 3.9000000e+01], | |||
| [4.0000000e+01, 4.1000000e+01]], | |||
| [[3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38]], | |||
| [[0.0000000e+00, 1.0000000e+00], | |||
| [2.0000000e+00, 3.0000000e+00], | |||
| [4.0000000e+00, 5.0000000e+00], | |||
| [6.0000000e+00, 7.0000000e+00], | |||
| [8.0000000e+00, 9.0000000e+00], | |||
| [1.0000000e+01, 1.1000000e+01], | |||
| [1.2000000e+01, 1.3000000e+01]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| # changing the input shape here for same net | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_3d_float32_b_dyn(): | |||
| """ | |||
| Tests for Dynamic shape with only second input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| num_segments = 4 | |||
| net = UnsortedSegmentMinDynNet(num_segments, False, True) | |||
| # test 1 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| output = net(input_x, segment_ids).asnumpy() | |||
| expect = np.array([[[1.5000000e+01, 1.6000000e+01, 1.7000000e+01], | |||
| [1.8000000e+01, 1.9000000e+01, 2.0000000e+01], | |||
| [2.1000000e+01, 2.2000000e+01, 2.3000000e+01], | |||
| [2.4000000e+01, 2.5000000e+01, 2.6000000e+01], | |||
| [2.7000000e+01, 2.8000000e+01, 2.9000000e+01]], | |||
| [[3.0000000e+01, 3.1000000e+01, 3.2000000e+01], | |||
| [3.3000000e+01, 3.4000000e+01, 3.5000000e+01], | |||
| [3.6000000e+01, 3.7000000e+01, 3.8000000e+01], | |||
| [3.9000000e+01, 4.0000000e+01, 4.1000000e+01], | |||
| [4.2000000e+01, 4.3000000e+01, 4.4000000e+01]], | |||
| [[3.4028235e+38, 3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38, 3.4028235e+38], | |||
| [3.4028235e+38, 3.4028235e+38, 3.4028235e+38]], | |||
| [[0.0000000e+00, 1.0000000e+00, 2.0000000e+00], | |||
| [3.0000000e+00, 4.0000000e+00, 5.0000000e+00], | |||
| [6.0000000e+00, 7.0000000e+00, 8.0000000e+00], | |||
| [9.0000000e+00, 1.0000000e+01, 1.1000000e+01], | |||
| [1.2000000e+01, 1.3000000e+01, 1.4000000e+01]]]).astype(np.float32) | |||
| np.testing.assert_array_almost_equal(output, expect) | |||
| # test 2 | |||
| input_x = Tensor(np.arange( | |||
| 4 * 7 * 2, dtype=np.float32).reshape(4, 7, 2), dtype=mindspore.float32) | |||
| segment_ids = Tensor([3, 0, 1, -1], mstype.int32) | |||
| @@ -83,25 +83,21 @@ def test_3D(): | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[45., 47., 49.], | |||
| [51., 53., 55.], | |||
| [57., 59., 61.], | |||
| [63., 65., 67.], | |||
| [69., 71., 73.]], | |||
| [[0., 1., 2.], | |||
| [3., 4., 5.], | |||
| [6., 7., 8.], | |||
| [9., 10., 11.], | |||
| [12., 13., 14.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| @@ -112,32 +108,39 @@ def test_3D(): | |||
| # Testing Dynamic Shape | |||
| class UnsortedSegmentSumDynNet(nn.Cell): | |||
| def __init__(self, num_segments): | |||
| def __init__(self, num_segments, dyn_a=True, dyn_b=True): | |||
| super(UnsortedSegmentSumDynNet, self).__init__() | |||
| self.unsorted_segment_sum = P.UnsortedSegmentSum() | |||
| self.to_dyn_op = inner.GpuConvertToDynamicShape() | |||
| self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() | |||
| self.num_segments = num_segments | |||
| self.to_dyn_1 = dyn_a | |||
| self.to_dyn_2 = dyn_b | |||
| def construct(self, data, ids): | |||
| data_dyn = self.to_dyn_op(data) | |||
| ids_dyn = self.to_dyn_op(ids) | |||
| return self.unsorted_segment_sum(data_dyn, ids_dyn, self.num_segments) | |||
| # testing selective inputs being dynamic | |||
| if self.to_dyn_1: | |||
| data = self.gpu_convert_to_dynamic_shape(data) | |||
| if self.to_dyn_2: | |||
| ids = self.gpu_convert_to_dynamic_shape(ids) | |||
| return self.unsorted_segment_sum(data, ids, self.num_segments) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_dyn(): | |||
| def test_dyn_ab(): | |||
| """ | |||
| Tests for Dynamic shape with both inputs dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| num_segments = 4 | |||
| net = UnsortedSegmentSumDynNet(num_segments) | |||
| # test 1 | |||
| input_x = Tensor([1, 2, 3, 4], mstype.float32) | |||
| segment_ids = Tensor([0, 0, 1, 2], mstype.int32) | |||
| output = net(input_x, segment_ids) | |||
| expect = [3, 3, 4, 0] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test 2 | |||
| input_x = Tensor([[1, 2, 3, 4], | |||
| [5, 6, 7, 8], | |||
| [9, 10, 11, 12]], mstype.float32) | |||
| @@ -148,7 +151,7 @@ def test_dyn(): | |||
| [1, 2, 3, 4], | |||
| [0, 0, 0, 0]] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test 3 | |||
| input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3)) | |||
| segment_ids = Tensor([2, 1, 1, -1], mstype.int32) | |||
| output = net(input_x, segment_ids) | |||
| @@ -157,19 +160,16 @@ def test_dyn(): | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[45., 47., 49.], | |||
| [51., 53., 55.], | |||
| [57., 59., 61.], | |||
| [63., 65., 67.], | |||
| [69., 71., 73.]], | |||
| [[0., 1., 2.], | |||
| [3., 4., 5.], | |||
| [6., 7., 8.], | |||
| [9., 10., 11.], | |||
| [12., 13., 14.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| @@ -181,17 +181,20 @@ def test_dyn(): | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_dyn_1(): | |||
| def test_dyn_a(): | |||
| """ | |||
| Tests for Dynamic shape with first input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| num_segments = 6 | |||
| net = UnsortedSegmentSumDynNet(num_segments) | |||
| net = UnsortedSegmentSumDynNet(num_segments, True, False) | |||
| # test 1 | |||
| input_x = Tensor([1, 2, 3, 4], mstype.float32) | |||
| segment_ids = Tensor([0, 0, 1, 2], mstype.int32) | |||
| output = net(input_x, segment_ids) | |||
| expect = [3, 3, 4, 0, 0, 0] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test 2 | |||
| input_x = Tensor([[1, 2, 3, 4], | |||
| [5, 6, 7, 8], | |||
| [9, 10, 11, 12]], mstype.float32) | |||
| @@ -204,7 +207,7 @@ def test_dyn_1(): | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0]] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test 3 | |||
| input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3)) | |||
| segment_ids = Tensor([2, 1, 1, -1], mstype.int32) | |||
| output = net(input_x, segment_ids) | |||
| @@ -213,31 +216,92 @@ def test_dyn_1(): | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[45., 47., 49.], | |||
| [51., 53., 55.], | |||
| [57., 59., 61.], | |||
| [63., 65., 67.], | |||
| [69., 71., 73.]], | |||
| [[0., 1., 2.], | |||
| [3., 4., 5.], | |||
| [6., 7., 8.], | |||
| [9., 10., 11.], | |||
| [12., 13., 14.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]]] | |||
| assert (output.asnumpy() == expect).all() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_dyn_b(): | |||
| """ | |||
| Tests for Dynamic shape with second input dynamic | |||
| """ | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| num_segments = 6 | |||
| net = UnsortedSegmentSumDynNet(num_segments, False, True) | |||
| # test 1 | |||
| input_x = Tensor([1, 2, 3, 4], mstype.float32) | |||
| segment_ids = Tensor([0, 0, 1, 2], mstype.int32) | |||
| output = net(input_x, segment_ids) | |||
| expect = [3, 3, 4, 0, 0, 0] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test 2 | |||
| input_x = Tensor([[1, 2, 3, 4], | |||
| [5, 6, 7, 8], | |||
| [9, 10, 11, 12]], mstype.float32) | |||
| segment_ids = Tensor([2, 1, 1], mstype.int32) | |||
| output = net(input_x, segment_ids) | |||
| expect = [[0, 0, 0, 0], | |||
| [14, 16, 18, 20], | |||
| [1, 2, 3, 4], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0], | |||
| [0, 0, 0, 0]] | |||
| assert (output.asnumpy() == expect).all() | |||
| # test 3 | |||
| input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3)) | |||
| segment_ids = Tensor([2, 1, 1, -1], mstype.int32) | |||
| output = net(input_x, segment_ids) | |||
| expect = [[[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[45., 47., 49.], | |||
| [51., 53., 55.], | |||
| [57., 59., 61.], | |||
| [63., 65., 67.], | |||
| [69., 71., 73.]], | |||
| [[0., 1., 2.], | |||
| [3., 4., 5.], | |||
| [6., 7., 8.], | |||
| [9., 10., 11.], | |||
| [12., 13., 14.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||