Merge pull request !35 from jonathan_yan/4SZtags/v0.2.0-alpha
| @@ -45,5 +45,5 @@ TEST_F(MindDataTestArena, TestALLFunction) { | |||
| for (int i = 0; i < 1000; i++) { | |||
| mp->Deallocate(v.at(i)); | |||
| } | |||
| std::cout << *mp; | |||
| MS_LOG(DEBUG) << *mp; | |||
| } | |||
| @@ -196,6 +196,6 @@ TEST_F(MindDataTestBPlusTree, Test3) { | |||
| EXPECT_EQ(it.value(), "b"); | |||
| MS_LOG(INFO) << "Dump all the values using [] operator."; | |||
| for (uint64_t i = min; i <= max; i++) { | |||
| std::cout << ai[i] << std::endl; | |||
| MS_LOG(DEBUG) << ai[i] << std::endl; | |||
| } | |||
| } | |||
| @@ -81,7 +81,8 @@ TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar10) { | |||
| uint32_t label = 0; | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 100); | |||
| @@ -108,7 +109,8 @@ TEST_F(MindDataTestCifarOp, TestRandomSamplerCifar10) { | |||
| uint32_t label = 0; | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 12); | |||
| @@ -133,7 +135,8 @@ TEST_F(MindDataTestCifarOp, TestCifar10NumSample) { | |||
| uint32_t label = 0; | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 100); | |||
| @@ -159,8 +162,9 @@ TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar100) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["coarse_label"]->GetItemAt<uint32_t>(&coarse, {}); | |||
| tensor_map["fine_label"]->GetItemAt<uint32_t>(&fine, {}); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << " coarse:" | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << " coarse:" | |||
| << coarse << " fine:" << fine << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 100); | |||
| @@ -52,7 +52,7 @@ Status TestMem(MindDataTestCircularPool *tp, int32_t num_iterations) { | |||
| uint64_t new_sz = dist(gen); | |||
| std::string str = "Allocate " + std::to_string(old_sz) + | |||
| " bytes of memory and then resize to " + std::to_string(new_sz); | |||
| std::cout << str << std::endl; | |||
| MS_LOG(DEBUG) << str << std::endl; | |||
| std::string id = Services::GetUniqueID(); | |||
| void *p; | |||
| RETURN_IF_NOT_OK(tp->mp_->Allocate(old_sz, &p)); | |||
| @@ -76,9 +76,9 @@ TEST_F(MindDataTestCircularPool, TestALLFunction) { | |||
| vg_.CreateAsyncTask("TestMem", f); | |||
| } | |||
| vg_.join_all(); | |||
| std::cout << vg_.GetTaskErrorIfAny() << std::endl; | |||
| MS_LOG(DEBUG) << vg_.GetTaskErrorIfAny() << std::endl; | |||
| ASSERT_TRUE(vg_.GetTaskErrorIfAny().IsOk()); | |||
| CircularPool *cp = dynamic_cast<CircularPool *>(mp_.get()); | |||
| std::cout << *cp << std::endl; | |||
| MS_LOG(DEBUG) << *cp << std::endl; | |||
| } | |||
| @@ -102,7 +102,8 @@ TEST_F(MindDataTestImageFolderSampler, TestSequentialImageFolderWithRepeat) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_TRUE(res[(i % 44) / 11] == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 88); | |||
| @@ -126,7 +127,8 @@ TEST_F(MindDataTestImageFolderSampler, TestRandomImageFolder) { | |||
| int32_t label = 0; | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 44); | |||
| @@ -155,7 +157,8 @@ TEST_F(MindDataTestImageFolderSampler, TestRandomSamplerImageFolder) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_TRUE(res[i] == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 12); | |||
| @@ -185,8 +188,9 @@ TEST_F(MindDataTestImageFolderSampler, TestSequentialImageFolderWithRepeatBatch) | |||
| std::shared_ptr<Tensor> label; | |||
| Create1DTensor(&label, 11, reinterpret_cast<unsigned char *>(res[i % 4]), DataType::DE_INT32); | |||
| EXPECT_TRUE((*label) == (*tensor_map["label"])); | |||
| std::cout << "row: " << i++ << " " << tensor_map["image"]->shape() << " (*label):" << (*label) | |||
| MS_LOG(DEBUG) << "row: " << i << " " << tensor_map["image"]->shape() << " (*label):" << (*label) | |||
| << " *tensor_map[label]: " << *tensor_map["label"] << std::endl; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 8); | |||
| @@ -282,7 +286,8 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderClassIndex) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_TRUE(label == res[i / 11]); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 22); | |||
| @@ -308,7 +313,8 @@ TEST_F(MindDataTestImageFolderSampler, TestDistributedSampler) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_EQ(i % 4, label); | |||
| std::cout << "row:" << i++ << "\tlabel:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 16); | |||
| @@ -335,7 +341,8 @@ TEST_F(MindDataTestImageFolderSampler, TestPKSamplerImageFolder) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_TRUE(res[i] == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 12); | |||
| @@ -360,7 +367,8 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderNumSamples) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_TRUE(0 == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 22); | |||
| @@ -392,7 +400,8 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderDecode) { | |||
| EXPECT_TRUE(label == res[i / 11]); | |||
| EXPECT_TRUE( | |||
| tensor_map["image"]->shape() == TensorShape({2268, 4032, 3})); // verify shapes are correct after decode | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 20); | |||
| @@ -442,7 +451,8 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding1) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_EQ(labels[i], label); | |||
| std::cout << "row:" << i++ << "\tlabel:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 5); | |||
| @@ -470,7 +480,8 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding2) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| EXPECT_EQ(labels[i], label); | |||
| std::cout << "row:" << i++ << "\tlabel:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 11); | |||
| @@ -76,7 +76,8 @@ TEST_F(MindDataTestManifest, TestSequentialManifestWithRepeat) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| EXPECT_TRUE(res[i] == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 4); | |||
| @@ -134,7 +135,8 @@ TEST_F(MindDataTestManifest, MindDataTestManifestClassIndex) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| EXPECT_TRUE(label == res[i]); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 2); | |||
| @@ -159,7 +161,8 @@ TEST_F(MindDataTestManifest, MindDataTestManifestNumSamples) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| EXPECT_TRUE(0 == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 4); | |||
| @@ -184,7 +187,8 @@ TEST_F(MindDataTestManifest, MindDataTestManifestEval) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| EXPECT_TRUE(0 == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 1); | |||
| @@ -697,7 +697,7 @@ TEST_F(MindDataTestMapOp, ImageFolder_Decode_Repeat_Resize) { | |||
| std::string result; | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| std::cout << "row:" << i << "\tlabel:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n"; | |||
| EXPECT_TRUE(img_class[(i % 44) / 11] == label); | |||
| // Dump all the image into string, to be used as a comparison later. | |||
| result.append((char *) tensor_map["image"]->StartAddr(), (int64_t) tensor_map["image"]->Size()); | |||
| @@ -743,7 +743,7 @@ TEST_F(MindDataTestMapOp, ImageFolder_Decode_Repeat_Resize) { | |||
| std::string result2; | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<int32_t>(&label, {}); | |||
| std::cout << "row:" << i << "\tlabel:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row:" << i << "\tlabel:" << label << "\n"; | |||
| EXPECT_TRUE(img_class[(i % 44) / 11] == label); | |||
| result2.append((char *) tensor_map["image"]->StartAddr(), (int64_t) tensor_map["image"]->Size()); | |||
| di2.GetNextAsMap(&tensor_map); | |||
| @@ -35,7 +35,7 @@ class MindDataTestMemoryPool : public UT::Common { | |||
| }; | |||
| TEST_F(MindDataTestMemoryPool, DumpPoolInfo) { | |||
| std::cout << *(std::dynamic_pointer_cast<CircularPool>(mp_)) << std::endl; | |||
| MS_LOG(DEBUG) << *(std::dynamic_pointer_cast<CircularPool>(mp_)) << std::endl; | |||
| } | |||
| TEST_F(MindDataTestMemoryPool, TestOperator1) { | |||
| @@ -72,5 +72,5 @@ TEST_F(MindDataTestMemoryPool, TestAllocator) { | |||
| std::shared_ptr<A> obj_a = std::allocate_shared<A>(alloc, 3); | |||
| int v = obj_a->val_a(); | |||
| ASSERT_EQ(v, 3); | |||
| std::cout << *(std::dynamic_pointer_cast<CircularPool>(mp_)) << std::endl; | |||
| MS_LOG(DEBUG) << *(std::dynamic_pointer_cast<CircularPool>(mp_)) << std::endl; | |||
| } | |||
| @@ -69,7 +69,7 @@ TEST_F(MindDataTestMindRecordOp, TestMindRecordBasic) { | |||
| rc = builder.Build(&my_mindrecord_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::cout << (*my_mindrecord_op); | |||
| MS_LOG(DEBUG) << (*my_mindrecord_op); | |||
| my_tree->AssociateNode(my_mindrecord_op); | |||
| @@ -140,7 +140,7 @@ TEST_F(MindDataTestMindRecordOp, TestMindRecordSample) { | |||
| rc = builder.Build(&my_mindrecord_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::cout << (*my_mindrecord_op); | |||
| MS_LOG(DEBUG) << (*my_mindrecord_op); | |||
| my_tree->AssociateNode(my_mindrecord_op); | |||
| @@ -211,7 +211,7 @@ TEST_F(MindDataTestMindRecordOp, TestMindRecordShuffle) { | |||
| rc = builder.Build(&my_mindrecord_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::cout << (*my_mindrecord_op); | |||
| MS_LOG(DEBUG) << (*my_mindrecord_op); | |||
| my_tree->AssociateNode(my_mindrecord_op); | |||
| @@ -285,7 +285,7 @@ TEST_F(MindDataTestMindRecordOp, TestMindRecordCategory) { | |||
| rc = builder.Build(&my_mindrecord_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::cout << (*my_mindrecord_op); | |||
| MS_LOG(DEBUG) << (*my_mindrecord_op); | |||
| my_tree->AssociateNode(my_mindrecord_op); | |||
| @@ -352,7 +352,7 @@ TEST_F(MindDataTestMindRecordOp, TestMindRecordRepeat) { | |||
| rc = builder.Build(&my_mindrecord_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::cout << (*my_mindrecord_op); | |||
| MS_LOG(DEBUG) << (*my_mindrecord_op); | |||
| rc = my_tree->AssociateNode(my_mindrecord_op); | |||
| EXPECT_TRUE(rc.IsOk()); | |||
| @@ -434,7 +434,7 @@ TEST_F(MindDataTestMindRecordOp, TestMindRecordBlockReaderRepeat) { | |||
| rc = builder.Build(&my_mindrecord_op); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| std::cout << (*my_mindrecord_op); | |||
| MS_LOG(DEBUG) << (*my_mindrecord_op); | |||
| rc = my_tree->AssociateNode(my_mindrecord_op); | |||
| EXPECT_TRUE(rc.IsOk()); | |||
| @@ -91,7 +91,8 @@ TEST_F(MindDataTestMnistSampler, TestSequentialMnistWithRepeat) { | |||
| while (tensor_map.size() != 0) { | |||
| tensor_map["label"]->GetItemAt<uint32_t>(&label, {}); | |||
| EXPECT_TRUE(res[i % 10] == label); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << label << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 20); | |||
| @@ -120,7 +121,8 @@ TEST_F(MindDataTestMnistSampler, TestSequentialImageFolderWithRepeatBatch) { | |||
| std::shared_ptr<Tensor> label; | |||
| Create1DTensor(&label, 5, reinterpret_cast<unsigned char *>(res[i % 4])); | |||
| EXPECT_TRUE((*label) == (*tensor_map["label"])); | |||
| std::cout << "row: " << i++ << "\t" << tensor_map["image"]->shape() << "label:" << *tensor_map["label"] << "\n"; | |||
| MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << "label:" << *tensor_map["label"] << "\n"; | |||
| i++; | |||
| di.GetNextAsMap(&tensor_map); | |||
| } | |||
| EXPECT_TRUE(i == 4); | |||
| @@ -51,7 +51,7 @@ TEST_F(MindDataTestNormalizeOP, TestOp) { | |||
| cv::Mat cv_output_image; | |||
| cv_output_image = p->mat(); | |||
| std::cout << "Storing output file to : " << output_filename << std::endl; | |||
| MS_LOG(DEBUG) << "Storing output file to : " << output_filename << std::endl; | |||
| cv::FileStorage file(output_filename, cv::FileStorage::WRITE); | |||
| file << "imageData" << cv_output_image; | |||
| } | |||
| @@ -47,8 +47,8 @@ TEST_F(MindDataTestOneHotOp, TestOp) { | |||
| EXPECT_TRUE(s.IsOk()); | |||
| ASSERT_TRUE(output->shape() == expected->shape()); | |||
| ASSERT_TRUE(output->type() == expected->type()); | |||
| std::cout << *output << std::endl; | |||
| std::cout << *expected << std::endl; | |||
| MS_LOG(DEBUG) << *output << std::endl; | |||
| MS_LOG(DEBUG) << *expected << std::endl; | |||
| ASSERT_TRUE(*output == *expected); | |||
| MS_LOG(INFO) << "MindDataTestOneHotOp end."; | |||
| @@ -38,7 +38,7 @@ TEST_F(MindDataTestPath, Test1) { | |||
| int i = 0; | |||
| while (dir_it->hasNext()) { | |||
| Path v = dir_it->next(); | |||
| std::cout << v.toString() << "\n"; | |||
| MS_LOG(DEBUG) << v.toString() << "\n"; | |||
| i++; | |||
| if (i == 10) { | |||
| break; | |||
| @@ -46,7 +46,7 @@ TEST_F(MindDataTestPath, Test1) { | |||
| } | |||
| // Test extension. | |||
| Path g("file.jpeg"); | |||
| std::cout << g.Extension() << "\n"; | |||
| MS_LOG(DEBUG) << g.Extension() << "\n"; | |||
| ASSERT_EQ(g.Extension(), ".jpeg"); | |||
| } | |||
| @@ -44,7 +44,7 @@ class RefCount { | |||
| explicit RefCount(int x) : v_(std::make_shared<int>(x)) {} | |||
| explicit RefCount(const RefCount &o) : v_(o.v_) {} | |||
| ~RefCount() { | |||
| std::cout << "Destructor of RefCount called" << std::endl; | |||
| MS_LOG(DEBUG) << "Destructor of RefCount called" << std::endl; | |||
| gRefCountDestructorCalled++; | |||
| } | |||
| RefCount& operator=(const RefCount &o) { | |||
| @@ -78,7 +78,7 @@ TEST_F(MindDataTestRandomCropDecodeResizeOp, TestOp2) { | |||
| } else { | |||
| mse = mse_sum; | |||
| } | |||
| std::cout << "mse: " << mse << std::endl; | |||
| MS_LOG(DEBUG) << "mse: " << mse << std::endl; | |||
| } | |||
| MS_LOG(INFO) << "MindDataTestRandomCropDecodeResizeOp end!"; | |||
| } | |||
| @@ -150,7 +150,7 @@ TEST_F(MindDataTestRandomCropDecodeResizeOp, TestOp1) { | |||
| } | |||
| mse = (count == 0) ? mse_sum : static_cast<float>(mse_sum) / count; | |||
| std::cout << "mse: " << mse << std::endl; | |||
| MS_LOG(DEBUG) << "mse: " << mse << std::endl; | |||
| } | |||
| MS_LOG(INFO) << "MindDataTestRandomCropDecodeResizeOp end!"; | |||
| } | |||
| @@ -78,7 +78,7 @@ TEST_F(MindDataTestStandAloneSampler, TestDistributedSampler) { | |||
| sampler->Init(&mock); | |||
| sampler->GetNextBuffer(&db); | |||
| db->GetTensor(&tensor, 0, 0); | |||
| std::cout << (*tensor); | |||
| MS_LOG(DEBUG) << (*tensor); | |||
| if(i < 3) { // This is added due to std::shuffle() | |||
| EXPECT_TRUE((*tensor) == (*row[i])); | |||
| } | |||
| @@ -43,19 +43,19 @@ TEST_F(MindDataTestStatus, Test1) { | |||
| Status rc; | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| Status err1(StatusCode::kOutOfMemory, __LINE__, __FILE__); | |||
| std::cout << err1; | |||
| MS_LOG(DEBUG) << err1; | |||
| ASSERT_TRUE(err1.IsOutofMemory()); | |||
| ASSERT_TRUE(err1.IsError()); | |||
| Status err2(StatusCode::kUnexpectedError, __LINE__, __FILE__, "Oops"); | |||
| std::cout << err2; | |||
| MS_LOG(DEBUG) << err2; | |||
| } | |||
| TEST_F(MindDataTestStatus, Test2) { | |||
| Status rc = f1(); | |||
| std::cout << rc; | |||
| MS_LOG(DEBUG) << rc; | |||
| } | |||
| TEST_F(MindDataTestStatus, Test3) { | |||
| Status rc = f3(); | |||
| std::cout << rc; | |||
| MS_LOG(DEBUG) << rc; | |||
| } | |||
| @@ -36,7 +36,7 @@ Status f(TaskGroup &vg){ | |||
| RETURN_IF_NOT_OK(vg.CreateAsyncTask("Infinity", [&]() -> Status { | |||
| TaskManager::FindMe()->Post(); | |||
| int a = v.fetch_add(1); | |||
| std::cout << a << std::endl; | |||
| MS_LOG(DEBUG) << a << std::endl; | |||
| return f(vg); | |||
| })); | |||
| } | |||
| @@ -311,7 +311,7 @@ TEST_F(MindDataTestTensorDE, CVTensorAs) { | |||
| m = 2 * m; | |||
| ASSERT_EQ(ctv->StartAddr(), addr); | |||
| ASSERT_TRUE(*t2 == *ctv); | |||
| std::cout << *t2 << std::endl << *ctv; | |||
| MS_LOG(DEBUG) << *t2 << std::endl << *ctv; | |||
| } | |||
| TEST_F(MindDataTestTensorDE, CVTensorMatSlice) { | |||
| @@ -54,7 +54,7 @@ void testCast(std::vector<FROM> values, const DataType &from, const DataType &to | |||
| EXPECT_TRUE(op->Compute(t, &output)); | |||
| ASSERT_TRUE(t->shape() == output->shape()); | |||
| ASSERT_TRUE(DataType(to)==output->type()); | |||
| std::cout << *output << std::endl; | |||
| MS_LOG(DEBUG) << *output << std::endl; | |||
| auto out = output->begin<TO>(); | |||
| auto v = values.begin(); | |||
| for (; out != output->end<TO>(); out++, v++) { | |||
| @@ -58,7 +58,8 @@ TEST_F(TestShardOperator, TestShardSampleBasic) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| ASSERT_TRUE(i <= kSampleCount); | |||
| @@ -83,7 +84,8 @@ TEST_F(TestShardOperator, TestShardSampleWrongNumber) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| ASSERT_TRUE(i <= 5); | |||
| @@ -108,7 +110,8 @@ TEST_F(TestShardOperator, TestShardSampleRatio) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| ASSERT_TRUE(i <= 10); | |||
| @@ -137,7 +140,8 @@ TEST_F(TestShardOperator, TestShardSamplePartition) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| ASSERT_TRUE(i <= 10); | |||
| @@ -166,8 +170,9 @@ TEST_F(TestShardOperator, TestShardCategory) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| ASSERT_TRUE((std::get<1>(x[0]))["label"] == categories[category_no].second); | |||
| @@ -194,8 +199,9 @@ TEST_F(TestShardOperator, TestShardShuffle) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| } | |||
| @@ -218,8 +224,9 @@ TEST_F(TestShardOperator, TestShardSampleShuffle) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| ASSERT_LE(i, 35); | |||
| @@ -244,8 +251,9 @@ TEST_F(TestShardOperator, TestShardShuffleSample) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| ASSERT_TRUE(i <= kSampleSize); | |||
| @@ -270,8 +278,9 @@ TEST_F(TestShardOperator, TestShardSampleShuffleSample) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| } | |||
| dataset.Finish(); | |||
| ASSERT_LE(i, 35); | |||
| @@ -298,8 +307,9 @@ TEST_F(TestShardOperator, TestShardShuffleCompare) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| auto y = compare_dataset.GetNext(); | |||
| if ((std::get<1>(x[0]))["file_name"] != (std::get<1>(y[0]))["file_name"]) different = true; | |||
| @@ -332,8 +342,9 @@ TEST_F(TestShardOperator, TestShardCategoryShuffle1) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| ASSERT_TRUE((std::get<1>(x[0]))["label"] == categories[category_no].second); | |||
| category_no++; | |||
| @@ -365,8 +376,9 @@ TEST_F(TestShardOperator, TestShardCategoryShuffle2) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| ASSERT_TRUE((std::get<1>(x[0]))["label"] == categories[category_no].second); | |||
| category_no++; | |||
| category_no %= static_cast<int>(categories.size()); | |||
| @@ -398,8 +410,9 @@ TEST_F(TestShardOperator, TestShardCategorySample) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| ASSERT_TRUE((std::get<1>(x[0]))["label"] == categories[category_no].second); | |||
| category_no++; | |||
| @@ -435,8 +448,9 @@ TEST_F(TestShardOperator, TestShardCategorySampleShuffle) { | |||
| while (true) { | |||
| auto x = dataset.GetNext(); | |||
| if (x.empty()) break; | |||
| MS_LOG(INFO) << "index: " << i++ << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| MS_LOG(INFO) << "index: " << i << ", filename: " << common::SafeCStr((std::get<1>(x[0]))["file_name"]) << | |||
| ", label: " << common::SafeCStr((std::get<1>(x[0]))["label"].dump()); | |||
| i++; | |||
| ASSERT_TRUE((std::get<1>(x[0]))["label"] == categories[category_no].second); | |||
| category_no++; | |||
| @@ -28,6 +28,7 @@ cd ${BUILD_PATH}/mindspore/tests/ut/cpp | |||
| export LD_LIBRARY_PATH=${BUILD_PATH}/mindspore/googletest/googlemock/gtest:${PROJECT_PATH}/mindspore:${PROJECT_PATH}/mindspore/lib:$LD_LIBRARY_PATH | |||
| export PYTHONPATH=${PROJECT_PATH}/tests/ut/cpp/python_input:$PYTHONPATH:${PROJECT_PATH} | |||
| export GLOG_v=2 | |||
| ## prepare data for dataset & mindrecord | |||
| cp -fr $PROJECT_PATH/tests/ut/data ${PROJECT_PATH}/build/mindspore/tests/ut/cpp/ | |||