Merge pull request !3075 from yuximiao/yuximiao_mindspore_profilertags/v0.6.0-beta
| @@ -216,6 +216,7 @@ install( | |||
| ${CMAKE_SOURCE_DIR}/mindspore/common | |||
| ${CMAKE_SOURCE_DIR}/mindspore/ops | |||
| ${CMAKE_SOURCE_DIR}/mindspore/communication | |||
| ${CMAKE_SOURCE_DIR}/mindspore/profiler | |||
| DESTINATION ${INSTALL_PY_DIR} | |||
| COMPONENT mindspore | |||
| ) | |||
| @@ -0,0 +1,27 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Profiler Module Introduction. | |||
| This module provides Python APIs to enable the profiling of MindSpore neural networks. | |||
| Users can import the mindspore.profiler.Profiler, initialize the Profiler object to start profiling, | |||
| and use Profiler.analyse() to stop profiling and analyse the results. | |||
| To visualize the profiling results, users can open mindspore Web, find the corresponding run | |||
| and click the profile link. | |||
| Now, Profiler supports the AICore operator analysis. | |||
| """ | |||
| from mindspore.profiler.profiling import Profiler | |||
| __all__ = ["Profiler"] | |||
| @@ -0,0 +1,14 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| @@ -0,0 +1,14 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| @@ -0,0 +1,85 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Profiler error code and messages.""" | |||
| from enum import unique, Enum | |||
| _GENERAL_MASK = 0b00001 << 7 | |||
| _PARSER_MASK = 0b00010 << 7 | |||
| _ANALYSER_MASK = 0b00011 << 7 | |||
| class ProfilerMgrErrors(Enum): | |||
| """Enum definition for profiler errors""" | |||
| @unique | |||
| class ProfilerErrors(ProfilerMgrErrors): | |||
| """Profiler error codes.""" | |||
| # general error code | |||
| PARAM_VALUE_ERROR = 0 | _GENERAL_MASK | |||
| PATH_ERROR = 1 | _GENERAL_MASK | |||
| PARAM_TYPE_ERROR = 2 | _GENERAL_MASK | |||
| DIR_NOT_FOUND_ERROR = 3 | _GENERAL_MASK | |||
| FILE_NOT_FOUND_ERROR = 4 | _GENERAL_MASK | |||
| IO_ERROR = 5 | _GENERAL_MASK | |||
| # parser error code | |||
| DEVICE_ID_MISMATCH_ERROR = 0 | _PARSER_MASK | |||
| RAW_FILE_ERROR = 1 | _PARSER_MASK | |||
| STEP_NUM_NOT_SUPPORTED_ERROR = 2 | _PARSER_MASK | |||
| JOB_ID_MISMATCH_ERROR = 3 | _PARSER_MASK | |||
| # analyser error code | |||
| COLUMN_NOT_EXIST_ERROR = 0 | _ANALYSER_MASK | |||
| ANALYSER_NOT_EXIST_ERROR = 1 | _ANALYSER_MASK | |||
| DEVICE_ID_ERROR = 2 | _ANALYSER_MASK | |||
| OP_TYPE_ERROR = 3 | _ANALYSER_MASK | |||
| GROUP_CONDITION_ERROR = 4 | _ANALYSER_MASK | |||
| SORT_CONDITION_ERROR = 5 | _ANALYSER_MASK | |||
| FILTER_CONDITION_ERROR = 6 | _ANALYSER_MASK | |||
| COLUMN_NOT_SUPPORT_SORT_ERROR = 7 | _ANALYSER_MASK | |||
| PIPELINE_OP_NOT_EXIST_ERROR = 8 | _ANALYSER_MASK | |||
| @unique | |||
| class ProfilerErrorMsg(Enum): | |||
| """Profiler error messages.""" | |||
| # general error msg | |||
| PARAM_VALUE_ERROR = 'Param value error. {}' | |||
| PATH_ERROR = 'Path error. {}' | |||
| PARAM_TYPE_ERROR = 'Param type error. {}' | |||
| DIR_NOT_FOUND_ERROR = 'The dir <{}> not found.' | |||
| FILE_NOT_FOUND_ERROR = 'The file <{}> not found.' | |||
| IO_ERROR = 'Read or write file fail.' | |||
| # parser error msg | |||
| DEVICE_ID_MISMATCH_ERROR = 'The device ID mismatch.' | |||
| RAW_FILE_ERROR = 'Raw file error. {}' | |||
| STEP_NUM_NOT_SUPPORTED_ERROR = 'The step num must be in {}' | |||
| JOB_ID_MISMATCH_ERROR = 'The job id in the parameter is not the same as ' \ | |||
| 'in the training trace file. ' | |||
| # analyser error msg | |||
| COLUMN_NOT_EXIST_ERROR = 'The column {} does not exist.' | |||
| ANALYSER_NOT_EXIST_ERROR = 'The analyser {} does not exist.' | |||
| DEIVICE_ID_ERROR = 'The device_id in search_condition error, {}' | |||
| FILTER_CONDITION_ERROR = 'The filter_condition in search_condition error, {}' | |||
| OP_TYPE_ERROR = 'The op_type in search_condition error, {}' | |||
| GROUP_CONDITION_ERROR = 'The group_condition in search_condition error, {}' | |||
| SORT_CONDITION_ERROR = 'The sort_condition in search_condition error, {}' | |||
| COLUMN_NOT_SUPPORT_SORT_ERROR = 'The column {} does not support to sort.' | |||
| PIPELINE_OP_NOT_EXIST_ERROR = 'The minddata pipeline operator {} does not exist.' | |||
| @@ -0,0 +1,287 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Definition of error code and relative messages in profiler module.""" | |||
| from mindspore.profiler.common.exceptions.error_code import ProfilerErrors, \ | |||
| ProfilerErrorMsg | |||
| class ProfilerException(Exception): | |||
| """ | |||
| Base class for Profilier exception. | |||
| Examples: | |||
| >>> raise ProfilerException(GeneralErrors.PATH_NOT_EXISTS_ERROR, 'path not exists') | |||
| """ | |||
| RUNTIME = 1 | |||
| TYPE = 1 | |||
| LEVEL = 0 | |||
| SYSID = 42 | |||
| def __init__(self, error, message, http_code=500): | |||
| """ | |||
| Initialization of ProfilerException. | |||
| Args: | |||
| error (Enum): Error value for specified case. | |||
| message (str): Description for exception. | |||
| http_code (int): Http code for exception. Default is 500. | |||
| """ | |||
| if isinstance(message, str): | |||
| message = ' '.join(message.split()) | |||
| super(ProfilerException, self).__init__(message) | |||
| self.error = error | |||
| self.message = message | |||
| self.http_code = http_code | |||
| @property | |||
| def error_code(self): | |||
| """ | |||
| Transform exception no to Profiler error code. | |||
| code compose(4bytes): | |||
| runtime 2bits, type 2bits, level 3bits, sysid 8bits, modid 5bits, value 12bits. | |||
| num = ((0xFF & runtime) << 30) \ | |||
| | ((0xFF & type) << 28) \ | |||
| | ((0xFF & level) << 25) \ | |||
| | ((0xFF & sysid) << 17) \ | |||
| | ((0xFF & modid) << 12) \ | |||
| | (0x0FFF & value) | |||
| Returns: | |||
| str, Hex string representing the composed Profiler error code. | |||
| """ | |||
| num = (((0xFF & self.RUNTIME) << 30) | |||
| | ((0xFF & self.TYPE) << 28) | |||
| | ((0xFF & self.LEVEL) << 25) | |||
| | ((0xFF & self.SYSID) << 17) | |||
| | ((0xFF & 6) << 12) | |||
| | (0x0FFF & self.error.value)) | |||
| return hex(num)[2:].zfill(8).upper() | |||
| def __str__(self): | |||
| return '[{}] code: {}, msg: {}'.format(self.__class__.__name__, self.error_code, self.message) | |||
| class ProfilerParamValueErrorException(ProfilerException): | |||
| """The parameter value error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerParamValueErrorException, self).__init__( | |||
| error=ProfilerErrors.PARAM_VALUE_ERROR, | |||
| message=ProfilerErrorMsg.PARAM_VALUE_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerPathErrorException(ProfilerException): | |||
| """The path error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerPathErrorException, self).__init__( | |||
| error=ProfilerErrors.PATH_ERROR, | |||
| message=ProfilerErrorMsg.PATH_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerParamTypeErrorException(ProfilerException): | |||
| """The parameter type error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerParamTypeErrorException, self).__init__( | |||
| error=ProfilerErrors.PARAM_TYPE_ERROR, | |||
| message=ProfilerErrorMsg.PARAM_TYPE_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerDirNotFoundException(ProfilerException): | |||
| """The dir not found exception in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerDirNotFoundException, self).__init__( | |||
| error=ProfilerErrors.DIR_NOT_FOUND_ERROR, | |||
| message=ProfilerErrorMsg.DIR_NOT_FOUND_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerFileNotFoundException(ProfilerException): | |||
| """The file not found exception in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerFileNotFoundException, self).__init__( | |||
| error=ProfilerErrors.FILE_NOT_FOUND_ERROR, | |||
| message=ProfilerErrorMsg.FILE_NOT_FOUND_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerIOException(ProfilerException): | |||
| """The IO exception in profiler module.""" | |||
| def __init__(self): | |||
| super(ProfilerIOException, self).__init__( | |||
| error=ProfilerErrors.IO_ERROR, | |||
| message=ProfilerErrorMsg.IO_ERROR.value, | |||
| http_code=400 | |||
| ) | |||
| class ProfilerDeviceIdMismatchException(ProfilerException): | |||
| """The device id mismatch exception in profiler module.""" | |||
| def __init__(self): | |||
| super(ProfilerDeviceIdMismatchException, self).__init__( | |||
| error=ProfilerErrors.DEVICE_ID_MISMATCH_ERROR, | |||
| message=ProfilerErrorMsg.DEVICE_ID_MISMATCH_ERROR.value, | |||
| http_code=400 | |||
| ) | |||
| class ProfilerRawFileException(ProfilerException): | |||
| """The raw file exception in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerRawFileException, self).__init__( | |||
| error=ProfilerErrors.RAW_FILE_ERROR, | |||
| message=ProfilerErrorMsg.RAW_FILE_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerColumnNotExistException(ProfilerException): | |||
| """The column does not exist exception in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerColumnNotExistException, self).__init__( | |||
| error=ProfilerErrors.COLUMN_NOT_EXIST_ERROR, | |||
| message=ProfilerErrorMsg.COLUMN_NOT_EXIST_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerAnalyserNotExistException(ProfilerException): | |||
| """The analyser in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerAnalyserNotExistException, self).__init__( | |||
| error=ProfilerErrors.ANALYSER_NOT_EXIST_ERROR, | |||
| message=ProfilerErrorMsg.ANALYSER_NOT_EXIST_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerDeviceIdException(ProfilerException): | |||
| """The parameter device_id error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerDeviceIdException, self).__init__( | |||
| error=ProfilerErrors.DEVICE_ID_ERROR, | |||
| message=ProfilerErrorMsg.DEIVICE_ID_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerOpTypeException(ProfilerException): | |||
| """The parameter op_type error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerOpTypeException, self).__init__( | |||
| error=ProfilerErrors.OP_TYPE_ERROR, | |||
| message=ProfilerErrorMsg.OP_TYPE_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerSortConditionException(ProfilerException): | |||
| """The parameter sort_condition error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerSortConditionException, self).__init__( | |||
| error=ProfilerErrors.SORT_CONDITION_ERROR, | |||
| message=ProfilerErrorMsg.SORT_CONDITION_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerFilterConditionException(ProfilerException): | |||
| """The parameter filer_condition error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerFilterConditionException, self).__init__( | |||
| error=ProfilerErrors.FILTER_CONDITION_ERROR, | |||
| message=ProfilerErrorMsg.FILTER_CONDITION_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerGroupConditionException(ProfilerException): | |||
| """The parameter group_condition error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerGroupConditionException, self).__init__( | |||
| error=ProfilerErrors.GROUP_CONDITION_ERROR, | |||
| message=ProfilerErrorMsg.GROUP_CONDITION_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class ProfilerColumnNotSupportSortException(ProfilerException): | |||
| """The column does not support to sort error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerColumnNotSupportSortException, self).__init__( | |||
| error=ProfilerErrors.COLUMN_NOT_SUPPORT_SORT_ERROR, | |||
| message=ProfilerErrorMsg.COLUMN_NOT_SUPPORT_SORT_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class StepNumNotSupportedException(ProfilerException): | |||
| """The step number error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(StepNumNotSupportedException, self).__init__( | |||
| error=ProfilerErrors.STEP_NUM_NOT_SUPPORTED_ERROR, | |||
| message=ProfilerErrorMsg.STEP_NUM_NOT_SUPPORTED_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| class JobIdMismatchException(ProfilerException): | |||
| """The Job ID mismatch error in profiler module.""" | |||
| def __init__(self): | |||
| super(JobIdMismatchException, self).__init__( | |||
| error=ProfilerErrors.JOB_ID_MISMATCH_ERROR, | |||
| message=ProfilerErrorMsg.JOB_ID_MISMATCH_ERROR.value, | |||
| http_code=400 | |||
| ) | |||
| class ProfilerPipelineOpNotExistException(ProfilerException): | |||
| """The minddata pipeline operator does not exist error in profiler module.""" | |||
| def __init__(self, msg): | |||
| super(ProfilerPipelineOpNotExistException, self).__init__( | |||
| error=ProfilerErrors.PIPELINE_OP_NOT_EXIST_ERROR, | |||
| message=ProfilerErrorMsg.PIPELINE_OP_NOT_EXIST_ERROR.value.format(msg), | |||
| http_code=400 | |||
| ) | |||
| @@ -0,0 +1,295 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Profiler util. | |||
| This module provides the utils. | |||
| """ | |||
| import os | |||
| # one sys count takes 10 ns, 1 ms has 100000 system count | |||
| import re | |||
| PER_MS_SYSCNT = 100000 | |||
| def to_int(param, param_name): | |||
| """ | |||
| Transfer param to int type. | |||
| Args: | |||
| param (Any): A param transformed. | |||
| param_name (str): Param name. | |||
| Returns: | |||
| int, value after transformed. | |||
| """ | |||
| try: | |||
| param = int(param) | |||
| except ValueError: | |||
| raise TypeError('Must be Integer: ' + param_name) | |||
| return param | |||
| def fwrite_format(output_data_path, data_source=None, is_print=False, is_start=False): | |||
| """ | |||
| Write data to the output file. | |||
| Args: | |||
| output_data_path (str): The output file path of the data. | |||
| data_source (str, list, tuple): The data to write. | |||
| is_print (bool): whether to print the data to stdout. | |||
| is_start (bool): Whether is the first line of the output file, will remove the old file if True." | |||
| """ | |||
| if is_start is True and os.path.exists(output_data_path): | |||
| os.remove(output_data_path) | |||
| if isinstance(data_source, str) and data_source.startswith("title:"): | |||
| title_label = '=' * 20 | |||
| data_source = title_label + data_source[6:] + title_label | |||
| with open(output_data_path, 'a+') as f: | |||
| if isinstance(data_source, (list, tuple)): | |||
| for raw_data in data_source: | |||
| if isinstance(raw_data, (list, tuple)): | |||
| raw_data = map(str, raw_data) | |||
| raw_data = " ".join(raw_data) | |||
| f.write(raw_data) | |||
| f.write("\n") | |||
| else: | |||
| f.write(data_source) | |||
| f.write("\n") | |||
| if is_print: | |||
| if isinstance(data_source, (list, tuple)): | |||
| for raw_data in data_source: | |||
| if isinstance(raw_data, (list, tuple)): | |||
| raw_data = map(str, raw_data) | |||
| raw_data = " ".join(raw_data) | |||
| print(raw_data) | |||
| else: | |||
| print(data_source) | |||
| def get_log_slice_id(file_name): | |||
| pattern = re.compile(r'(?<=slice_)\d+') | |||
| slice_list = pattern.findall(file_name) | |||
| index = re.findall(r'\d+', slice_list[0]) | |||
| return int(index[0]) | |||
| def get_file_join_name(input_path, file_name): | |||
| """ | |||
| Search files under the special path, and will join all the files to one file. | |||
| Args: | |||
| input_path (str): The source path, will search files under it. | |||
| file_name (str): The target of the filename, such as 'hwts.log.data.45.dev'. | |||
| Returns: | |||
| str, the join file name. | |||
| """ | |||
| name_list = [] | |||
| file_join_name = '' | |||
| input_path = os.path.realpath(input_path) | |||
| if os.path.exists(input_path): | |||
| files = os.listdir(input_path) | |||
| for f in files: | |||
| if file_name in f and not f.endswith('.done') and not f.endswith('.join') \ | |||
| and not f.endswith('.zip'): | |||
| name_list.append(f) | |||
| # resort name_list | |||
| name_list.sort(key=get_log_slice_id) | |||
| if len(name_list) == 1: | |||
| file_join_name = os.path.join(input_path, name_list[0]) | |||
| elif len(name_list) > 1: | |||
| file_join_name = os.path.join(input_path, '%s.join' % file_name) | |||
| if os.path.exists(file_join_name): | |||
| os.remove(file_join_name) | |||
| with open(file_join_name, 'ab') as bin_data: | |||
| for i in name_list: | |||
| file = input_path + os.sep + i | |||
| with open(file, 'rb') as txt: | |||
| bin_data.write(txt.read()) | |||
| return file_join_name | |||
| def get_file_names(input_path, file_name): | |||
| """ | |||
| Search files under the special path. | |||
| Args: | |||
| input_path (str): The source path, will search files under it. | |||
| file_name (str): The target of the filename, such as 'host_start_log'. | |||
| Returns: | |||
| list, file name list. | |||
| """ | |||
| input_path = os.path.realpath(input_path) | |||
| name_list = [] | |||
| if os.path.exists(input_path): | |||
| files = os.listdir(input_path) | |||
| for f in files: | |||
| if file_name in f and not f.endswith('.done') \ | |||
| and not f.endswith('.zip'): | |||
| name_list.append(f) | |||
| break | |||
| return name_list | |||
| def analyse_device_list_from_profiler_dir(profiler_dir): | |||
| """ | |||
| Analyse device list from profiler dir. | |||
| Args: | |||
| profiler_dir (str): The profiler data dir. | |||
| Returns: | |||
| list, the device_id list. | |||
| """ | |||
| profiler_file_prefix = ["timeline_display", "output_op_compute_time"] | |||
| device_id_list = set() | |||
| for _, _, filenames in os.walk(profiler_dir): | |||
| for filename in filenames: | |||
| if filename.startswith("step_trace_raw"): | |||
| items = filename.split("_") | |||
| device_num = "" | |||
| if len(items) > 3: | |||
| device_num = items[3] | |||
| else: | |||
| items = filename.split("_") | |||
| device_num = items[-1].split(".")[0] if items[-1].split(".") else "" | |||
| if device_num.isdigit() and '_'.join(items[:-1]) in profiler_file_prefix: | |||
| device_id_list.add(device_num) | |||
| return sorted(list(device_id_list)) | |||
| def query_latest_trace_time_file(profiler_dir, device_id=0): | |||
| """ | |||
| Query the latest trace time file. | |||
| Args: | |||
| profiler_dir (str): The profiler directory. | |||
| device_id (int): The id of device. | |||
| Returns: | |||
| str, the latest trace time file path. | |||
| """ | |||
| files = os.listdir(profiler_dir) | |||
| target_file = f'step_trace_raw_{device_id}_detail_time.csv' | |||
| try: | |||
| latest_file = max( | |||
| filter( | |||
| lambda file: file == target_file, | |||
| files | |||
| ), | |||
| key=lambda file: os.stat(os.path.join(profiler_dir, file)).st_mtime | |||
| ) | |||
| except ValueError: | |||
| return None | |||
| return os.path.join(profiler_dir, latest_file) | |||
| def query_step_trace_file(profiler_dir): | |||
| """ | |||
| Query for all step trace file. | |||
| Args: | |||
| profiler_dir (str): The directory that contains all step trace files. | |||
| Returns: | |||
| str, the file path of step trace time. | |||
| """ | |||
| files = os.listdir(profiler_dir) | |||
| training_trace_file = list( | |||
| filter( | |||
| lambda file: file.startswith('training_trace') and not file.endswith('.done'), | |||
| files | |||
| ) | |||
| ) | |||
| if training_trace_file: | |||
| return os.path.join(profiler_dir, training_trace_file[0]) | |||
| return None | |||
| def get_summary_for_step_trace(average_info, header): | |||
| """The property of summary info.""" | |||
| if not average_info or not header: | |||
| return {} | |||
| total_time = get_field_value(average_info, 'total', header) | |||
| iteration_interval = get_field_value(average_info, 'iteration_interval', | |||
| header) | |||
| fp_and_bp = get_field_value(average_info, 'fp_and_bp', header) | |||
| tail = get_field_value(average_info, 'tail', header) | |||
| summary = { | |||
| 'total_time': total_time, | |||
| 'iteration_interval': iteration_interval, | |||
| 'iteration_interval_percent': calculate_percent(iteration_interval, total_time), | |||
| 'fp_and_bp': fp_and_bp, | |||
| 'fp_and_bp_percent': calculate_percent(fp_and_bp, total_time), | |||
| 'tail': tail, | |||
| 'tail_percent': calculate_percent(tail, total_time) | |||
| } | |||
| return summary | |||
| def calculate_percent(partial, total): | |||
| """Calculate percent value.""" | |||
| if total: | |||
| percent = round(partial / total * 100, 2) | |||
| else: | |||
| percent = 0 | |||
| return f'{percent}%' | |||
| def to_millisecond(sys_count, limit=4): | |||
| """Translate system count to millisecond.""" | |||
| return round(sys_count / PER_MS_SYSCNT, limit) | |||
| def get_field_value(row_info, field_name, header, time_type='realtime'): | |||
| """ | |||
| Extract basic info through row_info. | |||
| Args: | |||
| row_info (list): The list of data info in one row. | |||
| field_name (str): The name in header. | |||
| header (list[str]): The list of field names. | |||
| time_type (str): The type of value, `realtime` or `systime`. Default: `realtime`. | |||
| Returns: | |||
| dict, step trace info in dict format. | |||
| """ | |||
| field_index = header.index(field_name) | |||
| value = row_info[field_index] | |||
| value = to_int(value, field_name) | |||
| if time_type == 'realtime': | |||
| value = to_millisecond(value) | |||
| return value | |||
| def get_options(options): | |||
| if options is None: | |||
| options = {} | |||
| return options | |||
| @@ -0,0 +1,14 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| @@ -0,0 +1,26 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Profiler check parameters.""" | |||
| def check_bool(input_param, param_name): | |||
| """Bool type judgment.""" | |||
| if isinstance(input_param, bool): | |||
| return input_param | |||
| raise TypeError("Parameter {}: input type must be bool!".format(param_name)) | |||
| def check_subgraph(subgraph): | |||
| """Check subgraph.""" | |||
| if subgraph in ("all", "Default", "Gradients"): | |||
| return subgraph | |||
| raise ValueError("subgraph must be all or Default or Gradients, but got {}.".format(subgraph)) | |||
| @@ -0,0 +1,307 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Validate the profiler parameters.""" | |||
| import os | |||
| import sys | |||
| from mindspore.profiler.common.exceptions.exceptions import ProfilerParamTypeErrorException, \ | |||
| ProfilerDeviceIdException, ProfilerOpTypeException, \ | |||
| ProfilerSortConditionException, ProfilerFilterConditionException, \ | |||
| ProfilerGroupConditionException, ProfilerParamValueErrorException | |||
| from mindspore import log | |||
| from mindspore.profiler.common.util import to_int | |||
| AICORE_TYPE_COL = ["op_type", "execution_time", "execution_frequency", "precent"] | |||
| AICORE_DETAIL_COL = ["op_name", "op_type", "avg_execution_time", "subgraph", "full_op_name"] | |||
| AICPU_COL = ["serial_number", "op_type", "total_time", "dispatch_time", "run_start", | |||
| "run_end"] | |||
| MINDDATA_PIPELINE_COL = [ | |||
| 'op_id', 'op_type', 'num_workers', 'output_queue_average_size', | |||
| 'output_queue_length', 'output_queue_usage_rate', 'sample_interval', | |||
| 'parent_id' | |||
| ] | |||
| def validate_condition(search_condition): | |||
| """ | |||
| Verify the param in search_condition is valid or not. | |||
| Args: | |||
| search_condition (dict): The search condition. | |||
| Raises: | |||
| ProfilerParamTypeErrorException: If the type of the param in search_condition is invalid. | |||
| ProfilerDeviceIdException: If the device_id param in search_condition is invalid. | |||
| ProfilerOpTypeException: If the op_type param in search_condition is invalid. | |||
| ProfilerGroupConditionException: If the group_condition param in search_condition is invalid. | |||
| ProfilerSortConditionException: If the sort_condition param in search_condition is invalid. | |||
| ProfilerFilterConditionException: If the filter_condition param in search_condition is invalid. | |||
| """ | |||
| if not isinstance(search_condition, dict): | |||
| log.error("Invalid search_condition type, it should be dict.") | |||
| raise ProfilerParamTypeErrorException( | |||
| "Invalid search_condition type, it should be dict.") | |||
| if "device_id" in search_condition: | |||
| device_id = search_condition.get("device_id") | |||
| if not isinstance(device_id, str): | |||
| raise ProfilerDeviceIdException("Invalid device_id type, it should be str.") | |||
| if "op_type" in search_condition: | |||
| op_type = search_condition.get("op_type") | |||
| if op_type == "aicpu": | |||
| search_scope = AICPU_COL | |||
| elif op_type == "aicore_type": | |||
| search_scope = AICORE_TYPE_COL | |||
| elif op_type == "aicore_detail": | |||
| search_scope = AICORE_DETAIL_COL | |||
| else: | |||
| raise ProfilerOpTypeException("The op_type must in ['aicpu', 'aicore_type', 'aicore_detail']") | |||
| else: | |||
| raise ProfilerOpTypeException("The op_type must in ['aicpu', 'aicore_type', 'aicore_detail']") | |||
| if "group_condition" in search_condition: | |||
| validate_group_condition(search_condition) | |||
| if "sort_condition" in search_condition: | |||
| validate_sort_condition(search_condition, search_scope) | |||
| if "filter_condition" in search_condition: | |||
| validate_filter_condition(search_condition) | |||
| def validate_group_condition(search_condition): | |||
| """ | |||
| Verify the group_condition in search_condition is valid or not. | |||
| Args: | |||
| search_condition (dict): The search condition. | |||
| Raises: | |||
| ProfilerGroupConditionException: If the group_condition param in search_condition is invalid. | |||
| """ | |||
| group_condition = search_condition.get("group_condition") | |||
| if not isinstance(group_condition, dict): | |||
| raise ProfilerGroupConditionException("The group condition must be dict.") | |||
| if "limit" in group_condition: | |||
| limit = group_condition.get("limit", 10) | |||
| if isinstance(limit, bool) \ | |||
| or not isinstance(group_condition.get("limit"), int): | |||
| log.error("The limit must be int.") | |||
| raise ProfilerGroupConditionException("The limit must be int.") | |||
| if limit < 1 or limit > 100: | |||
| raise ProfilerGroupConditionException("The limit must in [1, 100].") | |||
| if "offset" in group_condition: | |||
| offset = group_condition.get("offset", 0) | |||
| if isinstance(offset, bool) \ | |||
| or not isinstance(group_condition.get("offset"), int): | |||
| log.error("The offset must be int.") | |||
| raise ProfilerGroupConditionException("The offset must be int.") | |||
| if offset < 0: | |||
| raise ProfilerGroupConditionException("The offset must ge 0.") | |||
| if offset > 1000000: | |||
| raise ProfilerGroupConditionException("The offset must le 1000000.") | |||
| def validate_sort_condition(search_condition, search_scope): | |||
| """ | |||
| Verify the sort_condition in search_condition is valid or not. | |||
| Args: | |||
| search_condition (dict): The search condition. | |||
| search_scope (list): The search scope. | |||
| Raises: | |||
| ProfilerSortConditionException: If the sort_condition param in search_condition is invalid. | |||
| """ | |||
| sort_condition = search_condition.get("sort_condition") | |||
| if not isinstance(sort_condition, dict): | |||
| raise ProfilerSortConditionException("The sort condition must be dict.") | |||
| if "name" in sort_condition: | |||
| sorted_name = sort_condition.get("name", "") | |||
| err_msg = "The sorted_name must be in {}".format(search_scope) | |||
| if not isinstance(sorted_name, str): | |||
| log.error("Wrong sorted name type.") | |||
| raise ProfilerSortConditionException("Wrong sorted name type.") | |||
| if sorted_name not in search_scope: | |||
| log.error(err_msg) | |||
| raise ProfilerSortConditionException(err_msg) | |||
| if "type" in sort_condition: | |||
| sorted_type_param = ['ascending', 'descending'] | |||
| sorted_type = sort_condition.get("type") | |||
| if sorted_type and sorted_type not in sorted_type_param: | |||
| err_msg = "The sorted type must be ascending or descending." | |||
| log.error(err_msg) | |||
| raise ProfilerSortConditionException(err_msg) | |||
| def validate_op_filter_condition(op_condition, value_type=str, value_type_msg='str'): | |||
| """ | |||
| Verify the op_condition in filter_condition is valid or not. | |||
| Args: | |||
| op_condition (dict): The op_condition in search_condition. | |||
| value_type (type): The value type. Default: str. | |||
| value_type_msg (str): The value type message. Default: 'str'. | |||
| Raises: | |||
| ProfilerFilterConditionException: If the filter_condition param in search_condition is invalid. | |||
| """ | |||
| filter_key = ["in", "not_in", "partial_match_str_in"] | |||
| if not isinstance(op_condition, dict): | |||
| raise ProfilerFilterConditionException("The filter condition value must be dict.") | |||
| for key, value in op_condition.items(): | |||
| if not isinstance(key, str): | |||
| raise ProfilerFilterConditionException("The filter key must be str") | |||
| if not isinstance(value, list): | |||
| raise ProfilerFilterConditionException("The filter value must be list") | |||
| if key not in filter_key: | |||
| raise ProfilerFilterConditionException("The filter key must in {}.".format(filter_key)) | |||
| for item in value: | |||
| if not isinstance(item, value_type): | |||
| raise ProfilerFilterConditionException( | |||
| "The item in filter value must be {}.".format(value_type_msg) | |||
| ) | |||
| def validate_filter_condition(search_condition): | |||
| """ | |||
| Verify the filter_condition in search_condition is valid or not. | |||
| Args: | |||
| search_condition (dict): The search condition. | |||
| Raises: | |||
| ProfilerFilterConditionException: If the filter_condition param in search_condition is invalid. | |||
| """ | |||
| filter_condition = search_condition.get("filter_condition") | |||
| if not isinstance(filter_condition, dict): | |||
| raise ProfilerFilterConditionException("The filter condition must be dict.") | |||
| if filter_condition: | |||
| if "op_type" in filter_condition: | |||
| op_type_condition = filter_condition.get("op_type") | |||
| validate_op_filter_condition(op_type_condition) | |||
| if "op_name" in filter_condition: | |||
| op_name_condition = filter_condition.get("op_name") | |||
| validate_op_filter_condition(op_name_condition) | |||
| if "op_type" not in filter_condition and "op_name" not in filter_condition: | |||
| raise ProfilerFilterConditionException("The key of filter_condition is not support") | |||
| def validate_and_set_job_id_env(job_id_env): | |||
| """ | |||
| Validate the job id and set it in environment. | |||
| Args: | |||
| job_id_env (str): The id that to be set in environment parameter `JOB_ID`. | |||
| Returns: | |||
| int, the valid job id env. | |||
| """ | |||
| if job_id_env is None: | |||
| return job_id_env | |||
| # get job_id_env in int type | |||
| valid_id = to_int(job_id_env, 'job_id_env') | |||
| # check the range of valid_id | |||
| if valid_id and 255 < valid_id < sys.maxsize: | |||
| os.environ['JOB_ID'] = job_id_env | |||
| else: | |||
| log.warning("Invalid job_id_env %s. The value should be int and between 255 and %s. Use" | |||
| "default job id env instead.", | |||
| job_id_env, sys.maxsize) | |||
| return valid_id | |||
| def validate_ui_proc(proc_name): | |||
| """ | |||
| Validate proc name in restful request. | |||
| Args: | |||
| proc_name (str): The proc name to query. Acceptable value is in | |||
| [`iteration_interval`, `fp_and_bp`, `tail`]. | |||
| Raises: | |||
| ProfilerParamValueErrorException: If the proc_name is invalid. | |||
| """ | |||
| accept_names = ['iteration_interval', 'fp_and_bp', 'tail'] | |||
| if proc_name not in accept_names: | |||
| log.error("Invalid proc_name. The proc_name for restful api is in %s", accept_names) | |||
| raise ProfilerParamValueErrorException(f'proc_name should be in {accept_names}.') | |||
| def validate_minddata_pipeline_condition(condition): | |||
| """ | |||
| Verify the minddata pipeline search condition is valid or not. | |||
| Args: | |||
| condition (dict): The minddata pipeline search condition. | |||
| Raises: | |||
| ProfilerParamTypeErrorException: If the type of the search condition is | |||
| invalid. | |||
| ProfilerDeviceIdException: If the device_id param in the search | |||
| condition is invalid. | |||
| ProfilerGroupConditionException: If the group_condition param in the | |||
| search condition is invalid. | |||
| ProfilerSortConditionException: If the sort_condition param in the | |||
| search condition is invalid. | |||
| ProfilerFilterConditionException: If the filter_condition param in the | |||
| search condition is invalid. | |||
| """ | |||
| if not isinstance(condition, dict): | |||
| log.error("Invalid condition type, it should be dict.") | |||
| raise ProfilerParamTypeErrorException( | |||
| "Invalid condition type, it should be dict." | |||
| ) | |||
| if "device_id" in condition: | |||
| device_id = condition.get("device_id") | |||
| if not isinstance(device_id, str): | |||
| raise ProfilerDeviceIdException( | |||
| "Invalid device_id type, it should be str." | |||
| ) | |||
| if "group_condition" in condition: | |||
| validate_group_condition(condition) | |||
| if "sort_condition" in condition: | |||
| validate_sort_condition(condition, MINDDATA_PIPELINE_COL) | |||
| if "filter_condition" in condition: | |||
| filter_condition = condition.get('filter_condition') | |||
| if not isinstance(filter_condition, dict): | |||
| raise ProfilerFilterConditionException( | |||
| "The filter condition must be dict." | |||
| ) | |||
| for key, value in filter_condition.items(): | |||
| if key == 'op_id': | |||
| validate_op_filter_condition( | |||
| value, value_type=int, value_type_msg='int' | |||
| ) | |||
| elif key == 'op_type': | |||
| validate_op_filter_condition(value) | |||
| elif key == 'is_display_op_detail': | |||
| if not isinstance(value, bool): | |||
| raise ProfilerFilterConditionException( | |||
| "The condition must be bool." | |||
| ) | |||
| else: | |||
| raise ProfilerFilterConditionException( | |||
| "The key {} of filter_condition is not support.".format(key) | |||
| ) | |||
| @@ -0,0 +1,60 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Validate the input path.""" | |||
| import os | |||
| def validate_and_normalize_path( | |||
| path, | |||
| check_absolute_path=False, | |||
| allow_parent_dir=False, | |||
| ): | |||
| """ | |||
| Validates path and returns its normalized form. | |||
| If path has a valid scheme, treat path as url, otherwise consider path a | |||
| unix local path. | |||
| Note: | |||
| File scheme (rfc8089) is currently not supported. | |||
| Args: | |||
| path (str): Path to be normalized. | |||
| check_absolute_path (bool): Whether check path scheme is supported. | |||
| allow_parent_dir (bool): Whether allow parent dir in path. | |||
| Returns: | |||
| str, normalized path. | |||
| """ | |||
| if not path: | |||
| raise RuntimeError("The path is invalid!") | |||
| path_str = str(path) | |||
| if not allow_parent_dir: | |||
| path_components = path_str.split("/") | |||
| if ".." in path_components: | |||
| raise RuntimeError("The path is invalid!") | |||
| # path does not have valid schema, treat it as unix local path. | |||
| if check_absolute_path: | |||
| if not path_str.startswith("/"): | |||
| raise RuntimeError("The path is invalid!") | |||
| try: | |||
| # most unix systems allow | |||
| normalized_path = os.path.realpath(path) | |||
| except ValueError: | |||
| raise RuntimeError("The path is invalid!") | |||
| return normalized_path | |||
| @@ -0,0 +1,14 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| @@ -0,0 +1,175 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| The parser for AI CPU preprocess data. | |||
| """ | |||
| import os | |||
| from mindspore.profiler.common.util import fwrite_format, get_file_join_name | |||
| from mindspore import log as logger | |||
| class DataPreProcessParser: | |||
| """ | |||
| The Parser for AI CPU preprocess data. | |||
| Args: | |||
| input_path(str): The profiling job path. | |||
| output_filename(str): The output data path and name. | |||
| """ | |||
| _source_file_target = 'DATA_PREPROCESS.dev.AICPU.' | |||
| _dst_file_title = 'title:DATA_PREPROCESS AICPU' | |||
| _dst_file_column_title = ['serial_number', 'node_type_name', 'total_time(ms)', | |||
| 'dispatch_time(ms)', 'run_start', 'run_end'] | |||
| _ms_unit = 1000 | |||
| def __init__(self, input_path, output_filename): | |||
| self._input_path = input_path | |||
| self._output_filename = output_filename | |||
| self._source_file_name = self._get_source_file() | |||
| self._ms_kernel_flag = 3 | |||
| self._other_kernel_flag = 6 | |||
| self._thread_flag = 7 | |||
| self._ms_kernel_run_end_index = 2 | |||
| self._other_kernel_run_end_index = 5 | |||
| self._result_list = [] | |||
| self._min_cycle_counter = float('inf') | |||
| def _get_source_file(self): | |||
| """Get log file name, which was created by ada service.""" | |||
| file_name = get_file_join_name(self._input_path, self._source_file_target) | |||
| if not file_name: | |||
| data_path = os.path.join(self._input_path, "data") | |||
| file_name = get_file_join_name(data_path, self._source_file_target) | |||
| return file_name | |||
| def _get_kernel_result(self, number, node_list, thread_list): | |||
| """Get the profiling data form different aicpu kernel""" | |||
| try: | |||
| if len(node_list) == self._ms_kernel_flag and len(thread_list) == self._thread_flag: | |||
| node_type_name = node_list[0].split(':')[-1] | |||
| run_end_index = self._ms_kernel_run_end_index | |||
| elif len(node_list) == self._other_kernel_flag and len(thread_list) == self._thread_flag: | |||
| node_type_name = node_list[0].split(':')[-1].split('/')[-1].split('-')[0] | |||
| run_end_index = self._other_kernel_run_end_index | |||
| else: | |||
| logger.warning("the data format can't support 'node_list':%s", str(node_list)) | |||
| return None | |||
| run_start = node_list[1].split(':')[-1].split(' ')[0] | |||
| run_end = node_list[run_end_index].split(':')[-1].split(' ')[0] | |||
| total_time = float(thread_list[-1].split('=')[-1].split()[0]) / self._ms_unit | |||
| dispatch_time = float(thread_list[-2].split('=')[-1].split()[0]) / self._ms_unit | |||
| return [number, node_type_name, total_time, dispatch_time, | |||
| run_start, run_end] | |||
| except IndexError as e: | |||
| logger.error(e) | |||
| return None | |||
| def execute(self): | |||
| """Execute the parser, get result data, and write it to the output file.""" | |||
| if not os.path.exists(self._source_file_name): | |||
| logger.info("Did not find the aicpu profiling source file") | |||
| return | |||
| with open(self._source_file_name, 'rb') as ai_cpu_data: | |||
| ai_cpu_str = str(ai_cpu_data.read().replace(b'\n\x00', b' ___ ') | |||
| .replace(b'\x00', b' ___ '))[2:-1] | |||
| ai_cpu_lines = ai_cpu_str.split(" ___ ") | |||
| result_list = list() | |||
| ai_cpu_total_time_summary = 0 | |||
| # Node serial number. | |||
| serial_number = 1 | |||
| for i in range(len(ai_cpu_lines) - 1): | |||
| node_line = ai_cpu_lines[i] | |||
| thread_line = ai_cpu_lines[i + 1] | |||
| if "Node" in node_line and "Thread" in thread_line: | |||
| # Get the node data from node_line | |||
| node_list = node_line.split(',') | |||
| thread_list = thread_line.split(',') | |||
| result = self._get_kernel_result(serial_number, node_list, thread_list) | |||
| if result is None: | |||
| continue | |||
| result_list.append(result) | |||
| # Calculate the total time. | |||
| total_time = result[2] | |||
| ai_cpu_total_time_summary += total_time | |||
| # Increase node serial number. | |||
| serial_number += 1 | |||
| elif "Node" in node_line and "Thread" not in thread_line: | |||
| node_type_name = node_line.split(',')[0].split(':')[-1] | |||
| logger.warning("The node type:%s cannot find thread data", node_type_name) | |||
| if result_list: | |||
| ai_cpu_total_time = format(ai_cpu_total_time_summary, '.6f') | |||
| result_list.append(["AI CPU Total Time(ms):", ai_cpu_total_time]) | |||
| fwrite_format(self._output_filename, " ".join(self._dst_file_column_title), is_start=True, is_print=True) | |||
| fwrite_format(self._output_filename, result_list, is_print=True) | |||
| # For timeline display. | |||
| self._result_list = result_list | |||
| def query_aicpu_data(self): | |||
| """ | |||
| Get execution time of AI CPU operator. | |||
| Returns: | |||
| a dict, the metadata of AI CPU operator execution time. | |||
| """ | |||
| stream_id = 0 # Default stream id for AI CPU. | |||
| pid = 9000 # Default pid for AI CPU. | |||
| factor = 1000 # Convert time unit from 1us to 1ms | |||
| total_time = 0 | |||
| min_cycle_counter = float('inf') | |||
| aicpu_info = [] | |||
| op_count_list = [] | |||
| for aicpu_item in self._result_list: | |||
| if "AI CPU Total Time(ms):" in aicpu_item: | |||
| total_time = aicpu_item[-1] | |||
| continue | |||
| op_name = aicpu_item[1] | |||
| start_time = float(aicpu_item[4]) / factor | |||
| min_cycle_counter = min(min_cycle_counter, start_time) | |||
| end_time = float(aicpu_item[5]) / factor | |||
| duration = end_time - start_time | |||
| aicpu_info.append([op_name, stream_id, start_time, duration, pid]) | |||
| # Record the number of operator types. | |||
| if op_name not in op_count_list: | |||
| op_count_list.append(op_name) | |||
| self._min_cycle_counter = min_cycle_counter | |||
| aicpu_dict = { | |||
| 'info': aicpu_info, | |||
| 'total_time': float(total_time), | |||
| 'op_exe_times': len(aicpu_info), | |||
| 'num_of_ops': len(op_count_list), | |||
| 'num_of_streams': 1 | |||
| } | |||
| return aicpu_dict | |||
| @property | |||
| def min_cycle_counter(self): | |||
| """Get minimum cycle counter in AI CPU.""" | |||
| return self._min_cycle_counter | |||
| @@ -0,0 +1,113 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The container of metadata used in profiler parser.""" | |||
| class HWTSContainer: | |||
| """ | |||
| HWTS output container. | |||
| Args: | |||
| split_list (list): The split list of metadata in HWTS output file. | |||
| """ | |||
| def __init__(self, split_list): | |||
| self._op_name = '' | |||
| self._duration = None | |||
| self._status = split_list[0] | |||
| self._task_id = split_list[6] | |||
| self._cycle_counter = float(split_list[7]) | |||
| self._stream_id = split_list[8] | |||
| @property | |||
| def status(self): | |||
| """Get the status of the operator, i.e. Start or End.""" | |||
| return self._status | |||
| @property | |||
| def task_id(self): | |||
| """Get the task id of the operator.""" | |||
| return self._task_id | |||
| @property | |||
| def cycle_counter(self): | |||
| """Get the cycle counter.""" | |||
| return self._cycle_counter | |||
| @property | |||
| def stream_id(self): | |||
| """Get the stream id of the operator.""" | |||
| return self._stream_id | |||
| @property | |||
| def op_name(self): | |||
| """Get the name of the operator.""" | |||
| return self._op_name | |||
| @op_name.setter | |||
| def op_name(self, name): | |||
| """Set the name of the operator.""" | |||
| self._op_name = name | |||
| @property | |||
| def duration(self): | |||
| """Get the duration of the operator execution.""" | |||
| return self._duration | |||
| @duration.setter | |||
| def duration(self, value): | |||
| """Set the duration of the operator execution.""" | |||
| self._duration = value | |||
| class TimelineContainer: | |||
| """ | |||
| A container of operator computation metadata. | |||
| Args: | |||
| split_list (list): The split list of metadata in op_compute output file. | |||
| """ | |||
| def __init__(self, split_list): | |||
| self._op_name = split_list[0] | |||
| self._stream_id = int(split_list[1]) | |||
| self._start_time = float(split_list[2]) | |||
| self._duration = float(split_list[3]) | |||
| self._pid = None | |||
| if len(split_list) == 5: | |||
| self._pid = int(split_list[4]) | |||
| @property | |||
| def op_name(self): | |||
| """Get the name of the operator.""" | |||
| return self._op_name | |||
| @property | |||
| def stream_id(self): | |||
| """Get the stream id of the operator.""" | |||
| return self._stream_id | |||
| @property | |||
| def start_time(self): | |||
| """Get the execution start time of the operator.""" | |||
| return self._start_time | |||
| @property | |||
| def duration(self): | |||
| """Get the duration of the operator execution.""" | |||
| return self._duration | |||
| @property | |||
| def pid(self): | |||
| """Get the pid of the operator execution.""" | |||
| return self._pid | |||
| @@ -0,0 +1,595 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Thr parser for parsing framework files.""" | |||
| import csv | |||
| import enum | |||
| import json | |||
| import os | |||
| import re | |||
| from mindspore.profiler.common.exceptions.exceptions import \ | |||
| ProfilerPathErrorException, ProfilerDirNotFoundException, \ | |||
| ProfilerFileNotFoundException, ProfilerDeviceIdMismatchException, \ | |||
| ProfilerRawFileException, ProfilerParamValueErrorException | |||
| from mindspore.profiler.common.validator.validate_path import \ | |||
| validate_and_normalize_path | |||
| class VmDataType(enum.IntEnum): | |||
| """Definition of vm data type.""" | |||
| NUMBER_TYPE_BEGIN = 26 | |||
| NUMBER_TYPE_BOOL = 27 | |||
| NUMBER_TYPE_INT = 28 | |||
| NUMBER_TYPE_INT8 = 29 | |||
| NUMBER_TYPE_INT16 = 30 | |||
| NUMBER_TYPE_INT32 = 31 | |||
| NUMBER_TYPE_INT64 = 32 | |||
| NUMBER_TYPE_UINT = 33 | |||
| NUMBER_TYPE_UINT8 = 34 | |||
| NUMBER_TYPE_UINT16 = 35 | |||
| NUMBER_TYPE_UINT32 = 36 | |||
| NUMBER_TYPE_UINT64 = 37 | |||
| NUMBER_TYPE_FLOAT = 38 | |||
| NUMBER_TYPE_FLOAT16 = 39 | |||
| NUMBER_TYPE_FLOAT32 = 40 | |||
| NUMBER_TYPE_FLOAT64 = 41 | |||
| NUMBER_TYPE_END = 42 | |||
| @classmethod | |||
| def get_data_type_name(cls, num): | |||
| """ | |||
| Get the name of data type by enum number. | |||
| Args: | |||
| num (int): Enum number. | |||
| Returns: | |||
| str, the name of data type. | |||
| """ | |||
| data_type = cls._value2member_map_.get(num) | |||
| return 'UNKNOWN' if data_type is None else data_type.name | |||
| class GeDataType(enum.IntEnum): | |||
| """Definition of ge data type.""" | |||
| DT_FLOAT = 0 | |||
| DT_FLOAT16 = 1 | |||
| DT_INT8 = 2 | |||
| DT_INT16 = 6 | |||
| DT_UINT16 = 7 | |||
| DT_UINT8 = 4 | |||
| DT_INT32 = 3 | |||
| DT_INT64 = 9 | |||
| DT_UINT32 = 8 | |||
| DT_UINT64 = 10 | |||
| DT_BOOL = 12 | |||
| DT_DOUBLE = 11 | |||
| DT_STRING = 13 | |||
| DT_DUAL_SUB_INT8 = 14 | |||
| DT_DUAL_SUB_UINT8 = 15 | |||
| DT_COMPLEX64 = 16 | |||
| DT_COMPLEX128 = 17 | |||
| DT_QINT8 = 18 | |||
| DT_QINT16 = 19 | |||
| DT_QINT32 = 20 | |||
| DT_QUINT8 = 21 | |||
| DT_QUINT16 = 22 | |||
| DT_RESOURCE = 23 | |||
| DT_STRING_REF = 24 | |||
| DT_DUAL = 25 | |||
| DT_UNDEFINED = 26 | |||
| @classmethod | |||
| def get_data_type_name(cls, num): | |||
| """ | |||
| Get the name of data type by enum number. | |||
| Args: | |||
| num (int): Enum number. | |||
| Returns: | |||
| str, the name of data type. | |||
| """ | |||
| data_type = cls._value2member_map_.get(num) | |||
| return 'UNKNOWN' if data_type is None else data_type.name | |||
| class GeFormat(enum.IntEnum): | |||
| """Definition of ge format type.""" | |||
| FORMAT_NCHW = 0 | |||
| FORMAT_NHWC = 1 | |||
| FORMAT_ND = 2 | |||
| FORMAT_NC1HWC0 = 3 | |||
| FORMAT_FRACTAL_Z = 4 | |||
| FORMAT_NC1C0HWPAD = 5 | |||
| FORMAT_NHWC1C0 = 6 | |||
| FORMAT_FSR_NCHW = 7 | |||
| FORMAT_FRACTAL_DECONV = 8 | |||
| FORMAT_C1HWNC0 = 9 | |||
| FORMAT_FRACTAL_DECONV_TRANSPOSE = 10 | |||
| FORMAT_FRACTAL_DECONV_SP_STRIDE_TRANS = 11 | |||
| FORMAT_NC1HWC0_C04 = 12 | |||
| FORMAT_FRACTAL_Z_C04 = 13 | |||
| FORMAT_CHWN = 14 | |||
| FORMAT_FRACTAL_DECONV_SP_STRIDE8_TRANS = 15 | |||
| FORMAT_HWCN = 16 | |||
| FORMAT_NC1KHKWHWC0 = 17 | |||
| FORMAT_BN_WEIGHT = 18 | |||
| FORMAT_FILTER_HWCK = 19 | |||
| FORMAT_HASHTABLE_LOOKUP_LOOKUPS = 20 | |||
| FORMAT_HASHTABLE_LOOKUP_KEYS = 21 | |||
| FORMAT_HASHTABLE_LOOKUP_VALUE = 22 | |||
| FORMAT_HASHTABLE_LOOKUP_OUTPUT = 23 | |||
| FORMAT_HASHTABLE_LOOKUP_HITS = 24 | |||
| FORMAT_C1HWNCOC0 = 25 | |||
| FORMAT_MD = 26 | |||
| FORMAT_NDHWC = 27 | |||
| FORMAT_FRACTAL_ZZ = 28 | |||
| FORMAT_FRACTAL_NZ = 29 | |||
| FORMAT_NCDHW = 30 | |||
| FORMAT_DHWCN = 31 | |||
| FORMAT_NDC1HWC0 = 32 | |||
| FORMAT_FRACTAL_Z_3D = 33 | |||
| FORMAT_CN = 34 | |||
| FORMAT_NC = 35 | |||
| FORMAT_DHWNC = 36 | |||
| FORMAT_FRACTAL_Z_3D_TRANSPOSE = 37 | |||
| FORMAT_RESERVED = 38 | |||
| FORMAT_ALL = 39 | |||
| @classmethod | |||
| def get_format_name(cls, num): | |||
| """ | |||
| Get the name of format type by enum number. | |||
| Args: | |||
| num (int): Enum number. | |||
| Returns: | |||
| str, the name of format type. | |||
| """ | |||
| format_type = cls._value2member_map_.get(num) | |||
| return 'UNKNOWN' if format_type is None else format_type.name | |||
| class FrameworkParser: | |||
| """ | |||
| Thr parser for parsing framework files. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| device_id (str): The device ID. | |||
| output_path (str): The directory of the parsed file. Default: `./`. | |||
| """ | |||
| _raw_data_dir = '/var/log/npu/profiling' | |||
| _regex_framework = r'Framework\.host\.(?P<data_type>.+)\.(?P<device_id>\d).+' | |||
| _regex_framework_in_data = r'Framework\.host\.(?P<data_type>.+)\.' \ | |||
| r'(?P<device_id>\d)\.(?P<profiling_id>[a-zA-Z0-9]+).+' | |||
| _col_names = [ | |||
| 'task_id', 'stream_id', 'block_dim', 'full_op_name', 'op_name', | |||
| 'op_type', 'subgraph', 'op_info' | |||
| ] | |||
| _graph_attr_name = [ | |||
| 'input_format', 'input_data_type', 'input_shape', 'output_format', | |||
| 'output_data_type', 'output_shape' | |||
| ] | |||
| # if the task id is less than the task id threshold, The combination of | |||
| # task id and Stream id represents one operator, else the task id represents | |||
| # one operator | |||
| _task_id_threshold = 25000 | |||
| def __init__(self, profiling_id, device_id, output_path='./'): | |||
| self._profiling_path = self._get_raw_profiling_path(profiling_id) | |||
| self._backend_type = None | |||
| self._framework_path = {'graph': [], 'task': [], 'point': []} | |||
| self._search_file(profiling_id, device_id) | |||
| self._device_id = device_id | |||
| self._save_path = self._get_save_path(device_id, output_path) | |||
| self._task_id_full_op_name_dict = {} | |||
| self._task_cache = {} | |||
| self._point_info = {} | |||
| self._parse_task_files() | |||
| self._parse_point_files() | |||
| @property | |||
| def save_path(self): | |||
| """ | |||
| The property of save path. | |||
| Returns: | |||
| str, the save path. | |||
| """ | |||
| return self._save_path | |||
| @property | |||
| def point_info(self): | |||
| """ | |||
| The property of the framework point information. | |||
| Returns: | |||
| dict, the framework point information. | |||
| """ | |||
| return self._point_info | |||
| def to_task_id_full_op_name_dict(self): | |||
| """ | |||
| Get the task id and full operator name dict. | |||
| Returns: | |||
| dict, the task id and full operator name dict. | |||
| """ | |||
| return self._task_id_full_op_name_dict | |||
| def parse(self): | |||
| """Parse the framework files.""" | |||
| self._parse_graph_files_and_save(self._task_cache) | |||
| del self._task_cache | |||
| def check_op_name(self, op_name, is_prefix=True): | |||
| """ | |||
| Check whether the operator name exists. | |||
| Args: | |||
| op_name (str): The operator name or operator name prefix. | |||
| is_prefix (bool): `True` if the op_name is prefix, else `False`. | |||
| Default: True. | |||
| Returns: | |||
| bool, `True` if the operator name does exist in framework file, else | |||
| `False`. | |||
| """ | |||
| if not op_name: | |||
| raise ProfilerParamValueErrorException('The op_name should exist.') | |||
| for full_op_name in self._task_id_full_op_name_dict.values(): | |||
| if full_op_name: | |||
| if is_prefix and full_op_name.startswith(op_name): | |||
| return True | |||
| if not is_prefix and op_name == full_op_name: | |||
| return True | |||
| return False | |||
| def _get_raw_profiling_path(self, profiling_id): | |||
| """ | |||
| Get raw profiling path. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| Returns: | |||
| str, the raw profiling path. | |||
| Raises: | |||
| ProfilerPathErrorException: If the profiling path is invalid. | |||
| ProfilerDirNotFoundException: If the profiling dir is not found. | |||
| """ | |||
| profiling_path = os.path.join(self._raw_data_dir, profiling_id) | |||
| try: | |||
| profiling_path = validate_and_normalize_path(profiling_path) | |||
| except RuntimeError: | |||
| raise ProfilerPathErrorException('Profiling path is invalid.') | |||
| if not os.path.isdir(profiling_path): | |||
| raise ProfilerDirNotFoundException(profiling_path) | |||
| return profiling_path | |||
| def _search_file(self, profiling_id, device_id): | |||
| """ | |||
| Search all framework files in raw profiling path. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| device_id (str): The device ID. | |||
| Raises: | |||
| ProfilerFileNotFoundException: If the framework files are not found. | |||
| """ | |||
| # first search in the JOB dir, and if not, search in the sub directory | |||
| # in the JOB | |||
| self._search_file_from_job_path(device_id, search_in_sub_path=False) | |||
| if self._backend_type is None: | |||
| self._search_file_from_job_path(device_id, search_in_sub_path=True) | |||
| self._search_file_from_data_path(profiling_id, device_id) | |||
| if self._backend_type is None: | |||
| raise ProfilerFileNotFoundException('Framework') | |||
| self._framework_path['graph'].sort() | |||
| self._framework_path['task'].sort() | |||
| def _search_file_from_job_path(self, device_id, search_in_sub_path=False): | |||
| """ | |||
| Search framework files from job path. | |||
| Args: | |||
| device_id (str): The device ID. | |||
| search_in_sub_path (bool): `True` if search file in profiling dir, | |||
| else search in profiling sub dir. Default: False. | |||
| Raises: | |||
| ProfilerRawFileException: If the framework file type is inconsistent. | |||
| ProfilerDeviceIdMismatchException: If the device id is mismatch | |||
| with framework in the raw dir. | |||
| """ | |||
| profiling_dir = os.path.join(self._profiling_path, 'data') \ | |||
| if search_in_sub_path else self._profiling_path | |||
| if not os.path.isdir(profiling_dir): | |||
| return | |||
| files = os.listdir(profiling_dir) | |||
| for file in files: | |||
| pattern = re.search(self._regex_framework, file) | |||
| if not pattern or file.endswith('.done'): | |||
| continue | |||
| attrs = pattern.groupdict() | |||
| device_id_in_path = attrs.get('device_id') | |||
| if device_id_in_path != device_id: | |||
| raise ProfilerDeviceIdMismatchException() | |||
| data_type = attrs.get('data_type') | |||
| if data_type.startswith('vm.'): | |||
| if self._backend_type and self._backend_type != 'vm': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'vm' | |||
| data_type = data_type.split('.')[1] | |||
| else: | |||
| if self._backend_type and self._backend_type != 'ge': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'ge' | |||
| if data_type.startswith('graph_desc_info'): | |||
| self._framework_path['graph'].append( | |||
| os.path.join(profiling_dir, file) | |||
| ) | |||
| elif data_type.startswith('task_desc_info'): | |||
| self._framework_path['task'].append( | |||
| os.path.join(profiling_dir, file) | |||
| ) | |||
| elif data_type.startswith('point'): | |||
| self._framework_path['point'].append( | |||
| os.path.join(profiling_dir, file) | |||
| ) | |||
| def _search_file_from_data_path(self, profiling_id, device_id): | |||
| """ | |||
| Search framework files from data path. | |||
| Args: | |||
| profiling_id (str): The profiling ID. | |||
| device_id (str): The device ID. | |||
| Raises: | |||
| ProfilerRawFileException: If the framework file type is inconsistent. | |||
| ProfilerDeviceIdMismatchException: If the device id is mismatch | |||
| with framework in the raw dir. | |||
| """ | |||
| profiling_data_path = os.path.join( | |||
| self._raw_data_dir, 'container', device_id, 'data' | |||
| ) | |||
| if not os.path.isdir(profiling_data_path): | |||
| return | |||
| files = os.listdir(profiling_data_path) | |||
| for file in files: | |||
| pattern = re.search(self._regex_framework_in_data, file) | |||
| if not pattern or file.endswith('.done') or file.endswith('.zip'): | |||
| continue | |||
| attrs = pattern.groupdict() | |||
| profiling_id_in_path = attrs.get('profiling_id') | |||
| if profiling_id_in_path != profiling_id: | |||
| continue | |||
| device_id_in_path = attrs.get('device_id') | |||
| if device_id_in_path != device_id: | |||
| raise ProfilerDeviceIdMismatchException() | |||
| data_type = attrs.get('data_type') | |||
| if data_type.startswith('vm.'): | |||
| if self._backend_type and self._backend_type != 'vm': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'vm' | |||
| data_type = data_type.split('.')[1] | |||
| else: | |||
| if self._backend_type and self._backend_type != 'ge': | |||
| raise ProfilerRawFileException('Backend type is inconsistent.') | |||
| self._backend_type = 'ge' | |||
| if data_type.startswith('graph_desc_info'): | |||
| self._framework_path['graph'].append( | |||
| os.path.join(profiling_data_path, file) | |||
| ) | |||
| elif data_type.startswith('task_desc_info'): | |||
| self._framework_path['task'].append( | |||
| os.path.join(profiling_data_path, file) | |||
| ) | |||
| elif data_type.startswith('point'): | |||
| self._framework_path['point'].append( | |||
| os.path.join(profiling_data_path, file) | |||
| ) | |||
| def _get_save_path(self, device_id, output_path): | |||
| """ | |||
| Get the save path. | |||
| Args: | |||
| device_id (str): The device ID. | |||
| output_path (str): The output dir. | |||
| Returns: | |||
| str, the save path. | |||
| Raises: | |||
| ProfilerPathErrorException: If the output path is invalid. | |||
| ProfilerDirNotFoundException: If the output dir is not found. | |||
| """ | |||
| try: | |||
| output_dir = validate_and_normalize_path(output_path) | |||
| except RuntimeError: | |||
| raise ProfilerPathErrorException('Output path is invalid.') | |||
| if not os.path.isdir(output_dir): | |||
| raise ProfilerDirNotFoundException(output_dir) | |||
| return os.path.join( | |||
| output_dir, '_'.join(['framework', 'raw', device_id]) + '.csv' | |||
| ) | |||
| def _parse_task_files(self): | |||
| """Parse the framework task files.""" | |||
| for path in self._framework_path['task']: | |||
| with open(path, 'r') as file: | |||
| for task_info in file: | |||
| infos = task_info.strip('\n').split(' ') | |||
| infos = infos[1:] if len(infos) == 5 else infos | |||
| # key is op name, values is task id, stream id, block_dim | |||
| self._task_cache[infos[0]] = [infos[2], infos[3], infos[1]] | |||
| # if the task id is less than the task id threshold, the | |||
| # stream id and task id correspond to an operator | |||
| task_id = infos[2] | |||
| if int(task_id) < self._task_id_threshold: | |||
| task_id = '_'.join([infos[3], task_id]) | |||
| self._task_id_full_op_name_dict[task_id] = infos[0] | |||
| def _parse_graph_files_and_save(self, task_cache): | |||
| """ | |||
| Parse the framework graph files and save the framework information. | |||
| Args: | |||
| task_cache (dict): The task information cache. | |||
| """ | |||
| with open(self._save_path, 'w') as save_file: | |||
| csv_writer = csv.writer(save_file) | |||
| csv_writer.writerow(self._col_names) | |||
| for path in self._framework_path['graph']: | |||
| with open(path, 'r') as graph_file: | |||
| for graph_info in graph_file: | |||
| result = self._parse_one_row_graph_info(graph_info) | |||
| task_info = task_cache.get(result[0]) | |||
| if task_info: | |||
| task_info.extend(result) | |||
| csv_writer.writerow(task_info) | |||
| del task_cache[result[0]] | |||
| else: | |||
| save_info = [None, None, None] | |||
| save_info.extend(result) | |||
| csv_writer.writerow(save_info) | |||
| none_list = [None, None, None, None] | |||
| for key, value in task_cache.items(): | |||
| value.append(key) | |||
| value.extend(none_list) | |||
| csv_writer.writerow(value) | |||
| def _parse_one_row_graph_info(self, row_info): | |||
| """ | |||
| Parse the graph information in one row. | |||
| Args: | |||
| row_info (str): One row graph information. | |||
| Returns: | |||
| list[str], the parsed graph information. | |||
| """ | |||
| full_op_name = None | |||
| op_name = None | |||
| subgraph_name = None | |||
| op_type = None | |||
| op_info = dict() | |||
| cur_op_info_key = None | |||
| infos = row_info.strip('\n').split(' ') | |||
| for info in infos: | |||
| attr_name, attr_value = info.split(':', 1) | |||
| if attr_name == 'op_name': | |||
| full_op_name = attr_value | |||
| subgraph_name = self._get_subgraph_name(full_op_name) | |||
| op_name = self._get_op_name(full_op_name, subgraph_name) | |||
| elif attr_name == 'op_type': | |||
| op_type = attr_value | |||
| elif attr_name in ['input_id', 'output_id']: | |||
| cur_op_info_key = '{}_{}'.format( | |||
| attr_name.split('_')[0], attr_value | |||
| ) | |||
| op_info[cur_op_info_key] = dict() | |||
| elif attr_name in self._graph_attr_name: | |||
| op_attr = attr_name.split('_', 1)[1] | |||
| if op_attr == 'shape': | |||
| attr_value = attr_value.strip('"') | |||
| if self._backend_type == 'vm': | |||
| if op_attr == 'data_type': | |||
| attr_value = VmDataType.get_data_type_name( | |||
| int(attr_value) | |||
| ) | |||
| else: | |||
| if op_attr == 'data_type': | |||
| attr_value = GeDataType.get_data_type_name( | |||
| int(attr_value) | |||
| ) | |||
| elif op_attr == 'format': | |||
| attr_value = GeFormat.get_format_name(int(attr_value)) | |||
| op_info[cur_op_info_key][op_attr] = attr_value | |||
| # the list info are full_op_name, op_name, op_type, subgraph, op_info | |||
| return [full_op_name, op_name, op_type, subgraph_name, | |||
| json.dumps(op_info)] | |||
| def _get_subgraph_name(self, full_op_name): | |||
| """ | |||
| Get subgraph name. | |||
| Args: | |||
| full_op_name (str): The full operator name. | |||
| Returns: | |||
| str, the subgraph name. | |||
| """ | |||
| subgraph_name = full_op_name.split('/', 1)[0] | |||
| if subgraph_name in ['Default', 'Gradients']: | |||
| return subgraph_name | |||
| return None | |||
| def _get_op_name(self, full_op_name, subgraph_name): | |||
| """ | |||
| Get operator name. | |||
| Args: | |||
| full_op_name (str): The full operator name. | |||
| subgraph_name (str): The subgraph name. | |||
| Returns: | |||
| str, the operator name. | |||
| """ | |||
| if subgraph_name is None: | |||
| return full_op_name | |||
| if self._backend_type == 'vm': | |||
| return full_op_name.split('/')[-1] | |||
| strs = full_op_name.split(subgraph_name + '/') | |||
| op_name = None | |||
| for name_str in strs: | |||
| if not name_str: | |||
| continue | |||
| if op_name is None: | |||
| op_name = name_str.split('/')[-1] | |||
| else: | |||
| op_name = '+'.join([op_name, name_str.split('/')[-1]]) | |||
| return op_name | |||
| def _parse_point_files(self): | |||
| """Parse the framework point files.""" | |||
| for path in self._framework_path['point']: | |||
| with open(path, 'r') as file: | |||
| for point_info in file: | |||
| infos = point_info.strip('\n').split(' ') | |||
| self._point_info[int(infos[0])] = infos[1] | |||
| @@ -0,0 +1,109 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The parser for hwts log file.""" | |||
| import os | |||
| import struct | |||
| from mindspore.profiler.common.util import fwrite_format, get_file_join_name | |||
| from mindspore import log as logger | |||
| class HWTSLogParser: | |||
| """ | |||
| The Parser for hwts log files. | |||
| Args: | |||
| input_path (str): The profiling job path. Such as: '/var/log/npu/profiling/JOBAIFGJEJFEDCBAEADIFJAAAAAAAAAA". | |||
| output_filename (str): The output data path and name. Such as: './output_format_data_hwts_0.txt'. | |||
| """ | |||
| _source_file_target = 'hwts.log.data.45.dev.profiler_default_tag' | |||
| _dst_file_title = 'title:45 HWTS data' | |||
| _dst_file_column_title = 'Type cnt Core_ID Block_ID Task_ID Cycle_counter Stream_ID' | |||
| def __init__(self, input_path, output_filename): | |||
| self._input_path = input_path | |||
| self._output_filename = output_filename | |||
| self._source_flie_name = self._get_source_file() | |||
| def _get_source_file(self): | |||
| """Get hwts log file name, which was created by ada service.""" | |||
| file_name = get_file_join_name(self._input_path, self._source_file_target) | |||
| if not file_name: | |||
| data_path = os.path.join(self._input_path, "data") | |||
| file_name = get_file_join_name(data_path, self._source_file_target) | |||
| if not file_name: | |||
| msg = "Fail to find hwts log file, under profiling directory" | |||
| raise RuntimeError(msg) | |||
| return file_name | |||
| def execute(self): | |||
| """ | |||
| Execute the parser, get result data, and write it to the output file. | |||
| Returns: | |||
| bool, whether succeed to analyse hwts log. | |||
| """ | |||
| content_format = ['QIIIIIIIIIIII', 'QIIQIIIIIIII', 'IIIIQIIIIIIII'] | |||
| log_type = ['Start of task', 'End of task', 'Start of block', 'End of block', 'Block PMU'] | |||
| result_data = "" | |||
| with open(self._source_flie_name, 'rb') as hwts_data: | |||
| while True: | |||
| line = hwts_data.read(64) | |||
| if line: | |||
| if not line.strip(): | |||
| continue | |||
| else: | |||
| break | |||
| byte_first_four = struct.unpack('BBHHH', line[0:8]) | |||
| byte_first = bin(byte_first_four[0]).replace('0b', '').zfill(8) | |||
| ms_type = byte_first[-3:] | |||
| is_warn_res0_ov = byte_first[4] | |||
| cnt = int(byte_first[0:4], 2) | |||
| core_id = byte_first_four[1] | |||
| blk_id, task_id = byte_first_four[3], byte_first_four[4] | |||
| if ms_type in ['000', '001', '010']: # log type 0,1,2 | |||
| result = struct.unpack(content_format[0], line[8:]) | |||
| syscnt = result[0] | |||
| stream_id = result[1] | |||
| elif ms_type == '011': # log type 3 | |||
| result = struct.unpack(content_format[1], line[8:]) | |||
| syscnt = result[0] | |||
| stream_id = result[1] | |||
| elif ms_type == '100': # log type 4 | |||
| result = struct.unpack(content_format[2], line[8:]) | |||
| stream_id = result[2] | |||
| if is_warn_res0_ov == '0': | |||
| syscnt = result[4] | |||
| else: | |||
| syscnt = None | |||
| else: | |||
| logger.info("Profiling: invalid hwts log record type %s", ms_type) | |||
| continue | |||
| if int(task_id) < 25000: | |||
| task_id = str(stream_id) + "_" + str(task_id) | |||
| result_data += ("%-14s %-4s %-8s %-9s %-8s %-15s %s\n" %(log_type[int(ms_type, 2)], cnt, core_id, | |||
| blk_id, task_id, syscnt, stream_id)) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_column_title) | |||
| fwrite_format(self._output_filename, data_source=result_data) | |||
| return True | |||
| @@ -0,0 +1,581 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The integrator for integrating parsed profiling files.""" | |||
| import csv | |||
| import json | |||
| import os | |||
| from decimal import Decimal | |||
| from mindspore import log as logger | |||
| from mindspore.profiler.common.exceptions.exceptions import ProfilerIOException, \ | |||
| ProfilerFileNotFoundException, ProfilerRawFileException | |||
| from mindspore.profiler.common.util import query_latest_trace_time_file, to_int, to_millisecond | |||
| from mindspore.profiler.common.validator.validate_path import validate_and_normalize_path | |||
| from mindspore.profiler.parser.container import TimelineContainer | |||
| SIZE_LIMIT = 20 * 1024 * 1024 # 20MB | |||
| class Integrator: | |||
| """ | |||
| The integrator for integrating parsed profiling files. | |||
| Args: | |||
| profiling_dir (str): The directory where the parsed profiling files are | |||
| located. | |||
| device_id (str): The device ID. | |||
| """ | |||
| _file_name_aicore_detail_time = 'output_op_compute_time_{}.txt' | |||
| _file_name_aicpu_time = 'output_data_preprocess_aicpu_{}.txt' | |||
| _file_name_framework = 'framework_raw_{}.csv' | |||
| _header_aicore_type = ['op_type', 'execution_time', 'execution_frequency', | |||
| 'percent'] | |||
| _header_aicore_detail = ['full_op_name', 'execution_time'] | |||
| _header_aicpu = ['serial_number', 'op_type', 'total_time', 'dispatch_time', | |||
| 'run_start', 'run_end'] | |||
| _file_name_aicore_type_time = 'aicore_intermediate_{}_type.csv' | |||
| _file_name_aicore_detail_info = 'aicore_intermediate_{}_detail.csv' | |||
| _aicore_data = [] | |||
| _aicore_detail_data = [] | |||
| _aicore_trace_data = [] | |||
| _col_names = [] | |||
| def __init__(self, profiling_dir, device_id): | |||
| self._profiling_dir = profiling_dir | |||
| self._device_id = device_id | |||
| self._op_time_cache = {} | |||
| self._total_time = Decimal('0.0') | |||
| def integrate(self): | |||
| """Integrate the parsed profiling files.""" | |||
| self._parse_aicore_detail_time() | |||
| self._parse_aicore_type_time() | |||
| self._parse_aicpu_time() | |||
| def get_aicore_data(self): | |||
| self._aicore_data_load() | |||
| return self._aicore_data | |||
| def get_aicore_detail_data(self): | |||
| self._aicore_detail_data_load() | |||
| return self._aicore_detail_data | |||
| def get_aicore_trace_data(self): | |||
| self._aicore_trace_data_load() | |||
| return self._aicore_trace_data | |||
| def query_for_all_reduce(self): | |||
| return self._query_for_all_reduce() | |||
| def _parse_aicore_type_time(self): | |||
| """Parse the parsed AICORE operator type file.""" | |||
| framework_file = os.path.join( | |||
| self._profiling_dir, | |||
| self._file_name_framework.format(self._device_id) | |||
| ) | |||
| if not os.path.isfile(framework_file): | |||
| return | |||
| op_name_type_cache = {} | |||
| with open(framework_file, 'r') as src_file: | |||
| csv_reader = csv.reader(src_file) | |||
| _ = next(csv_reader) | |||
| for row in csv_reader: | |||
| op_name_type_cache[row[3]] = row[5] | |||
| op_type_time_cache = {} | |||
| for full_op_name, op_time in self._op_time_cache.items(): | |||
| op_type = op_name_type_cache.get(full_op_name) | |||
| if op_type_time_cache.get(op_type) is None: | |||
| op_type_time_cache[op_type] = [op_time, 1] | |||
| else: | |||
| op_type_time_cache[op_type][0] += op_time | |||
| op_type_time_cache[op_type][1] += 1 | |||
| op_type_file_name = 'aicore_intermediate_' + self._device_id + '_type.csv' | |||
| op_type_file_path = os.path.join(self._profiling_dir, op_type_file_name) | |||
| with open(op_type_file_path, 'w') as type_file: | |||
| csv_writer = csv.writer(type_file) | |||
| csv_writer.writerow(self._header_aicore_type) | |||
| for op_type, op_type_time_info in op_type_time_cache.items(): | |||
| type_info = [ | |||
| op_type, op_type_time_info[0], op_type_time_info[1], | |||
| round((op_type_time_info[0] / self._total_time) * 100, 2) | |||
| ] | |||
| csv_writer.writerow(type_info) | |||
| def _parse_aicore_detail_time(self): | |||
| """Parse the parsed AICORE operator time file.""" | |||
| aicore_detail_file = os.path.join( | |||
| self._profiling_dir, | |||
| self._file_name_aicore_detail_time.format(self._device_id) | |||
| ) | |||
| if not os.path.isfile(aicore_detail_file): | |||
| return | |||
| op_detail_file_name = 'aicore_intermediate_' + self._device_id + '_detail.csv' | |||
| op_detail_file_path = os.path.join( | |||
| self._profiling_dir, op_detail_file_name | |||
| ) | |||
| with open(aicore_detail_file, 'r') as src_file: | |||
| row = src_file.readline() | |||
| if row.startswith('op_name'): | |||
| _ = src_file.readline() | |||
| elif row.startswith('====='): | |||
| _ = src_file.readline() | |||
| _ = src_file.readline() | |||
| else: | |||
| return | |||
| with open(op_detail_file_path, 'w') as detail_file: | |||
| csv_writer = csv.writer(detail_file) | |||
| csv_writer.writerow(self._header_aicore_detail) | |||
| while True: | |||
| row = src_file.readline() | |||
| if not row: | |||
| break | |||
| op_infos = row.split() | |||
| if op_infos[0] == 'total': | |||
| self._total_time = Decimal(op_infos[2]) | |||
| continue | |||
| self._op_time_cache[op_infos[0]] = Decimal(op_infos[1]) | |||
| csv_writer.writerow([op_infos[0], op_infos[1]]) | |||
| def _parse_aicpu_time(self): | |||
| """Parse the parsed AICPU operator time file.""" | |||
| aicpu_file = os.path.join( | |||
| self._profiling_dir, | |||
| self._file_name_aicpu_time.format(self._device_id) | |||
| ) | |||
| if not os.path.isfile(aicpu_file): | |||
| return | |||
| save_file_name = 'aicpu_intermediate_' + self._device_id + '.csv' | |||
| save_file_path = os.path.join(self._profiling_dir, save_file_name) | |||
| with open(aicpu_file, 'r') as src_file: | |||
| row = src_file.readline() | |||
| if not row.startswith('serial_number'): | |||
| return | |||
| _ = src_file.readline() | |||
| with open(save_file_path, 'w') as save_file: | |||
| csv_writer = csv.writer(save_file) | |||
| csv_writer.writerow(self._header_aicpu) | |||
| while True: | |||
| row = src_file.readline() | |||
| if not row: | |||
| break | |||
| infos = row.split() | |||
| if infos[0] == 'AI': | |||
| continue | |||
| csv_writer.writerow(infos) | |||
| def _aicore_data_load(self): | |||
| """Load data according to the parsed AICORE operator types file.""" | |||
| op_type_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._file_name_aicore_type_time.format(self._device_id) | |||
| ) | |||
| if not os.path.isfile(op_type_file_path): | |||
| logger.warning('The file <%s> does not exist.', op_type_file_path) | |||
| return | |||
| with open(op_type_file_path, 'r') as file: | |||
| csv_reader = csv.reader(file) | |||
| _ = next(csv_reader) | |||
| for info in csv_reader: | |||
| self._aicore_data.append([info[0], float(info[1]), int(info[2]), float(info[3])]) | |||
| def _aicore_detail_data_load(self): | |||
| """Load data according to the parsed AICORE operator file.""" | |||
| op_detail_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._file_name_aicore_detail_info.format(self._device_id) | |||
| ) | |||
| framework_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._file_name_framework.format(self._device_id) | |||
| ) | |||
| if not os.path.isfile(op_detail_file_path): | |||
| logger.warning('The file <%s> does not exist.', op_detail_file_path) | |||
| return | |||
| if not os.path.isfile(framework_file_path): | |||
| logger.warning('The file <%s> does not exist.', framework_file_path) | |||
| return | |||
| framework_infos = dict() | |||
| with open(framework_file_path, 'r') as file: | |||
| csv_reader = csv.reader(file) | |||
| _ = next(csv_reader) | |||
| for info in csv_reader: | |||
| framework_infos[info[3]] = [ | |||
| info[3], info[4], info[5], info[6], json.loads(info[7]) if info[7] else None] | |||
| with open(op_detail_file_path, 'r') as file: | |||
| csv_reader = csv.reader(file) | |||
| _ = next(csv_reader) | |||
| for info in csv_reader: | |||
| framework_info = framework_infos.get(info[0]) | |||
| self._aicore_detail_data.append( | |||
| [ | |||
| framework_info[1], framework_info[2], float(info[1]), | |||
| framework_info[3], framework_info[0], framework_info[4] | |||
| ] | |||
| ) | |||
| del framework_infos | |||
| def _aicore_trace_data_load(self): | |||
| """Load data according to the parsed AICORE operator types file.""" | |||
| file_path = query_latest_trace_time_file(self._profiling_dir, int(self._device_id)) | |||
| if not file_path: | |||
| logger.error("Failed to find parsed trace time file.") | |||
| raise ProfilerFileNotFoundException('parsed step trace time file') | |||
| with open(file_path, 'r') as handle: | |||
| csv_reader = csv.reader(handle) | |||
| self.__column__ = next(csv_reader) | |||
| self._aicore_trace_data = list(csv_reader) | |||
| self._size = len(self._aicore_trace_data) - 1 | |||
| self._display_col_names = self._col_names[:] | |||
| self._load_point_info() | |||
| def _load_point_info(self): | |||
| """Load point info.""" | |||
| file_path = os.path.join(self._profiling_dir, 'step_trace_point_info.json') | |||
| if os.path.isfile(file_path): | |||
| with open(file_path, 'r', encoding='utf-8') as file: | |||
| try: | |||
| self._point_info = json.load(file) | |||
| except (json.JSONDecodeError, TypeError) as err: | |||
| logger.warning(err) | |||
| raise ProfilerRawFileException('Fail to parse point info file.') | |||
| def _query_for_all_reduce(self): | |||
| """ | |||
| Query for all reduce info. | |||
| Returns: | |||
| list[dict], reduce information. Each item is the reduce info for one step. | |||
| The reduce info is format like: | |||
| {stream_id: List[Tuple(start_point, end_point, duration, field_name)]}. | |||
| """ | |||
| self._aicore_trace_data_load() | |||
| reduce_infos = [] | |||
| for row_info in self._aicore_trace_data[:-1]: | |||
| row_info_dict = self._get_info_dict_from_row_data(row_info, 'systime') | |||
| reduce_info = self._sort_reduce_by_time(row_info_dict) | |||
| if reduce_info: | |||
| reduce_infos.extend(reduce_info) | |||
| return reduce_infos | |||
| def _get_info_dict_from_row_data(self, row_info, time_type): | |||
| """ | |||
| Get step info in dict format. | |||
| Args: | |||
| row_info (list[str]): Step info, the value is corresponding to `__column__`. | |||
| time_type (str): The value type. `systime` keeps the original value. | |||
| `realtime` transforms the value in millisecond. Default: `realtime`. | |||
| Returns: | |||
| dict, step trace information. The key is in `__column__`. | |||
| """ | |||
| row_info_dict = {} | |||
| for key, value in zip(self.__column__, row_info): | |||
| if key == 'step_num': | |||
| continue | |||
| value = to_int(value, key) | |||
| row_info_dict[key] = to_millisecond(value) if time_type == 'realtime' else value | |||
| return row_info_dict | |||
| def _sort_reduce_by_time(self, row_info_dict): | |||
| """ | |||
| Sort reduce info by time. | |||
| Args: | |||
| row_info_dict (dict): Step trace information. | |||
| Returns: | |||
| list, including the all reduce info sorted by start time only. | |||
| [ | |||
| [reduce_field, stream_id, reduce_start, reduce_duration], | |||
| [...], | |||
| [...] | |||
| ] | |||
| """ | |||
| factor = 1e5 # convert time unit from 10ns to 1ms | |||
| reduce_pid = 10000 | |||
| reduce_info = [] | |||
| reduce_fields = [field_name for field_name in self.__column__ | |||
| if field_name.startswith('stream_') and not field_name.endswith('point')] | |||
| for reduce_field in reduce_fields: | |||
| reduce_start = row_info_dict.get(reduce_field + '_start_point') | |||
| reduce_start = reduce_start / factor \ | |||
| if reduce_start else 0 | |||
| reduce_duration = row_info_dict.get(reduce_field) | |||
| reduce_duration = reduce_duration / factor if reduce_duration else 0 | |||
| if not (reduce_start and reduce_duration): | |||
| logger.info("Reduce event missing value.") | |||
| continue | |||
| cur_stream_id = reduce_field.split('_', 2)[1] | |||
| reduce_meta = [reduce_field, int(cur_stream_id), reduce_start, | |||
| reduce_duration, reduce_pid] | |||
| reduce_info.append(reduce_meta) | |||
| return reduce_info | |||
| class TimelineAnalyser: | |||
| """ | |||
| Analyse timeline data from file. | |||
| """ | |||
| __col_names__ = ['op_name', 'stream_id', 'start_time', 'duration'] | |||
| _output_timeline_data_file_path = 'output_timeline_data_{}.txt' | |||
| _min_cycle_counter_file_path = 'min_cycle_counter_{}.txt' | |||
| _display_filename = 'timeline_display_{}.json' | |||
| _timeline_summary_filename = 'timeline_summary_{}.json' | |||
| _timeline_meta = [] | |||
| _timeline_summary = { | |||
| 'total_time': 0, | |||
| 'num_of_streams': 0, | |||
| 'num_of_ops': 0, | |||
| 'op_exe_times': 0 | |||
| } | |||
| def __init__(self, profiling_dir, device_id): | |||
| self._profiling_dir = profiling_dir | |||
| self._device_id = device_id | |||
| def write_timeline(self): | |||
| """Load data according to the parsed profiling files.""" | |||
| # Write timeline to file. | |||
| logger.info('Writing timeline file...') | |||
| self.write_timeline_to_json_by_limitation() | |||
| logger.info('Finished file writing!') | |||
| def write_timeline_to_json_by_limitation(self): | |||
| """Write timeline to json by limitation.""" | |||
| display_filename = self._display_filename.format(self._device_id) | |||
| display_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| display_filename | |||
| ) | |||
| display_file_path = validate_and_normalize_path(display_file_path) | |||
| length = len(self._timeline_meta) | |||
| try: | |||
| with open(display_file_path, 'w') as json_file: | |||
| json_file.write('[') | |||
| for index, item in enumerate(self._timeline_meta): | |||
| json.dump(item, json_file) | |||
| file_size = os.path.getsize(display_file_path) | |||
| if file_size > SIZE_LIMIT: | |||
| break | |||
| if index == length - 1: | |||
| break | |||
| json_file.write(',') | |||
| json_file.write(']') | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when write timeline display file: %s', err) | |||
| raise ProfilerIOException | |||
| def write_timeline_summary(self): | |||
| """Write timeline summary to json.""" | |||
| timeline_summary_file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._timeline_summary_filename.format(self._device_id) | |||
| ) | |||
| timeline_summary_file_path = validate_and_normalize_path(timeline_summary_file_path) | |||
| try: | |||
| with open(timeline_summary_file_path, 'w') as json_file: | |||
| json.dump(self._timeline_summary, json_file) | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when write timeline summary file: %s', err) | |||
| raise ProfilerIOException | |||
| def _load_timeline_data(self): | |||
| """Load timeline data from file.""" | |||
| file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._output_timeline_data_file_path.format(self._device_id) | |||
| ) | |||
| file_path = validate_and_normalize_path(file_path) | |||
| if not os.path.exists(file_path): | |||
| logger.error("Failed to find parsed timeline file.") | |||
| raise ProfilerFileNotFoundException('parsed timeline file') | |||
| timeline_list = [] | |||
| try: | |||
| with open(file_path, 'r') as f_obj: | |||
| for line in f_obj: | |||
| if not line.startswith('op_name'): | |||
| line_list = line.strip('\n').split(',') | |||
| timeline_list.append(line_list) | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when read timeline intermediate file: %s', err) | |||
| raise ProfilerIOException | |||
| return timeline_list | |||
| def _parse_timeline_data(self, timeline, min_cycle_counter): | |||
| """Parse timeline data.""" | |||
| # factor to convert the time unit from 1ms to 1us for timeline display | |||
| factor = 1000 | |||
| op_meta = TimelineContainer(timeline) | |||
| timeline_dict = {} | |||
| timeline_dict['name'] = op_meta.op_name | |||
| timeline_dict['ph'] = 'X' | |||
| timeline_dict['tid'] = op_meta.stream_id | |||
| timeline_dict['ts'] = (op_meta.start_time - min_cycle_counter) * factor | |||
| dur = op_meta.duration * factor | |||
| timeline_dict['dur'] = dur | |||
| if op_meta.pid is None: | |||
| timeline_dict['pid'] = int(self._device_id) | |||
| # Update total time of operator execution. | |||
| self._timeline_summary['total_time'] += dur | |||
| else: # AllReduce and AI CPU pid | |||
| timeline_dict['pid'] = op_meta.pid | |||
| self._timeline_meta.append(timeline_dict) | |||
| @staticmethod | |||
| def _update_num_of_streams(timeline, stream_count_dict): | |||
| """Update number of streams.""" | |||
| stream_id = timeline[1] | |||
| if stream_id not in stream_count_dict.keys(): | |||
| stream_count_dict[stream_id] = 1 | |||
| else: | |||
| stream_count_dict[stream_id] += 1 | |||
| def get_min_cycle_counter(self): | |||
| """ | |||
| Get minimum cycle counter. | |||
| Returns: | |||
| float, the minimum value of the cycle counter. | |||
| """ | |||
| file_path = os.path.join( | |||
| self._profiling_dir, | |||
| self._min_cycle_counter_file_path.format(self._device_id) | |||
| ) | |||
| file_path = validate_and_normalize_path(file_path) | |||
| if os.path.exists(file_path): | |||
| try: | |||
| with open(file_path, 'r') as f_obj: | |||
| min_cycle_counter = f_obj.read() | |||
| min_cycle_counter = float(min_cycle_counter) \ | |||
| if not min_cycle_counter == 'inf' else 0 | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when read minimum cycle counter: %s', err) | |||
| raise ProfilerIOException | |||
| else: | |||
| min_cycle_counter = 0 | |||
| logger.info("No min cycle counter recorded.") | |||
| return min_cycle_counter | |||
| def init_timeline(self, all_reduce_info, framework_info, aicpu_info, min_cycle_counter): | |||
| """ | |||
| Init timeline metadata, adding all collected info. | |||
| Args: | |||
| all_reduce_info (list[list]): The metadata of AllReduce operator. | |||
| framework_info (dict): The framework metadata. | |||
| aicpu_info (dict): The metadata of AI CPU operator. | |||
| min_cycle_counter (float): The minimum cycle counter of the timeline. | |||
| """ | |||
| if min_cycle_counter == float('inf'): | |||
| min_cycle_counter = 0 | |||
| logger.info('Initiating timeline...') | |||
| timeline_list = self._load_timeline_data() | |||
| self._timeline_summary['op_exe_times'] = len(timeline_list) | |||
| # Add AllReduce info to timeline temp list and sort by start time. | |||
| if all_reduce_info: | |||
| logger.debug('AllReduce info found. Start adding info into timeline...') | |||
| timeline_list.extend(all_reduce_info) | |||
| timeline_list.sort(key=lambda x: float(x[2])) | |||
| # Add AI CPU data into timeline temp list and sort by start time. | |||
| aicpu_data = aicpu_info.get('info') | |||
| if aicpu_data: | |||
| timeline_list.extend(aicpu_data) | |||
| timeline_list.sort(key=lambda x: float(x[2])) | |||
| self._timeline_summary['op_exe_times'] += aicpu_info.get('op_exe_times', 0) | |||
| self._timeline_summary['num_of_streams'] += aicpu_info.get('num_of_streams', 0) | |||
| self._timeline_summary['num_of_ops'] += aicpu_info.get('num_of_ops', 0) | |||
| self._timeline_summary['total_time'] += aicpu_info.get('total_time', 0) | |||
| # Init a dict for counting the num of streams. | |||
| stream_count_dict = {} | |||
| for timeline in timeline_list: | |||
| self._parse_timeline_data(timeline, min_cycle_counter) | |||
| # Updating the collection of streams. | |||
| if len(timeline) == 4: | |||
| self._update_num_of_streams(timeline, stream_count_dict) | |||
| # Get framework metadata. | |||
| framework_obj_list = framework_info.get('object') | |||
| # The length of list is the number of operators. | |||
| self._timeline_summary['num_of_ops'] += len(framework_obj_list) | |||
| self._add_framework_info(framework_obj_list) | |||
| logger.info('Finished adding info into timeline...') | |||
| # Update timeline summary info | |||
| self._timeline_summary['num_of_streams'] += len(stream_count_dict.keys()) | |||
| def _add_framework_info(self, framework_obj_list): | |||
| """ | |||
| Add framework info into timeline metadata. | |||
| Args: | |||
| framework_obj_list (list): The framework metadata. | |||
| """ | |||
| logger.debug('Start adding framework info into timeline...') | |||
| # Get the framework info that will be written into timeline. | |||
| framework_info_dict = {} | |||
| for framework_obj in framework_obj_list: | |||
| op_name = framework_obj[0] | |||
| op_type = framework_obj[1] | |||
| op_full_name = framework_obj[4] | |||
| op_info = framework_obj[5] | |||
| framework_info_dict[op_full_name] = { | |||
| 'name': op_name, | |||
| 'args': { | |||
| 'type': op_type, | |||
| 'fullname': op_full_name | |||
| } | |||
| } | |||
| framework_info_dict[op_full_name]['args'].update(op_info) | |||
| # Insert framework info into timeline. | |||
| for timeline_item in self._timeline_meta: | |||
| op_full_name = timeline_item.get('name') | |||
| framework_item = framework_info_dict.get(op_full_name) | |||
| if framework_item: | |||
| timeline_item['name'] = framework_item.get('name') | |||
| timeline_item['args'] = framework_item.get('args') | |||
| logger.debug('Finished adding framework info into timeline...') | |||
| @@ -0,0 +1,88 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Minddata aicpu parser.""" | |||
| import os | |||
| from mindspore.profiler.common.util import get_file_join_name, fwrite_format | |||
| from mindspore import log as logger | |||
| class MinddataParser: | |||
| """Minddata Aicpu Parser.""" | |||
| @staticmethod | |||
| def parse_minddata_aicpu_data(minddata_aicpu_source_path): | |||
| """ | |||
| Parse minddata get_next info which contains queue size and execute time. | |||
| Args: | |||
| minddata_aicpu_source_path (str): the source file path. | |||
| Returns: | |||
| list[Union[str, float]], the converted data. | |||
| """ | |||
| result = list() | |||
| try: | |||
| with open(minddata_aicpu_source_path) as source_data_file: | |||
| source_data = source_data_file.read() | |||
| step_data = source_data.split("\x00") | |||
| for one_step in step_data: | |||
| if one_step: | |||
| node_info = one_step.split(", ") | |||
| node_name, node_start, node_end, queue_size = "", 0, 0, 0 | |||
| if node_info: | |||
| node_name = node_info[0].replace("Node:", "") | |||
| if len(node_info) > 2: | |||
| node_start = node_info[1].replace("Run start:", "") | |||
| if node_start.isdigit(): | |||
| node_start = int(node_start) | |||
| node_end = node_info[2].replace("Run end:", "") | |||
| if node_end.isdigit(): | |||
| node_end = int(node_end) | |||
| if len(node_info) > 3: | |||
| queue_size = node_info[3].replace("queue size:", "") | |||
| if queue_size.isdigit(): | |||
| queue_size = int(queue_size) | |||
| one_step_list = [node_name, node_start, node_end, queue_size] | |||
| result.append(one_step_list) | |||
| except OSError: | |||
| logger.error("Open get_next profiling file error.") | |||
| return result | |||
| @staticmethod | |||
| def execute(source_path, output_path, device_id): | |||
| """ | |||
| Execute the parser. | |||
| Args: | |||
| source_path (str): the source file path. | |||
| output_path (str): the output file path. | |||
| device_id (str): the device id. | |||
| """ | |||
| col_names = ["node_name", "start_time", "end_time", "queue_size"] | |||
| minddata_aicpu_source_path = get_file_join_name( | |||
| input_path=source_path, file_name='DATA_PREPROCESS.dev.AICPUMI') | |||
| if not minddata_aicpu_source_path: | |||
| minddata_aicpu_source_path = get_file_join_name( | |||
| input_path=os.path.join(source_path, "data"), file_name='DATA_PREPROCESS.dev.AICPUMI') | |||
| if not minddata_aicpu_source_path: | |||
| return | |||
| minddata_aicpu_output_path = os.path.join(output_path, "minddata_aicpu_" + device_id + ".txt") | |||
| minddata_aicpu_data = MinddataParser.parse_minddata_aicpu_data(minddata_aicpu_source_path) | |||
| if minddata_aicpu_data: | |||
| fwrite_format(minddata_aicpu_output_path, " ".join(col_names), is_start=True) | |||
| fwrite_format(minddata_aicpu_output_path, minddata_aicpu_data, is_start=True) | |||
| @@ -0,0 +1,287 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Thr parser for parsing minddata pipeline files.""" | |||
| import csv | |||
| import json | |||
| import os | |||
| from queue import Queue | |||
| from mindspore.profiler.common.exceptions.exceptions import \ | |||
| ProfilerPathErrorException, ProfilerFileNotFoundException, \ | |||
| ProfilerDirNotFoundException, ProfilerRawFileException | |||
| from mindspore import log as logger | |||
| from mindspore.profiler.common.validator.validate_path import \ | |||
| validate_and_normalize_path | |||
| class MinddataPipelineParser: | |||
| """ | |||
| Thr parser for parsing minddata pipeline files. | |||
| Args: | |||
| source_dir (str): The minddata pipeline source dir. | |||
| device_id (str): The device ID. | |||
| output_path (str): The directory of the parsed file. Default: `./`. | |||
| Raises: | |||
| ProfilerPathErrorException: If the minddata pipeline file path or | |||
| the output path is invalid. | |||
| ProfilerFileNotFoundException: If the minddata pipeline file or | |||
| the output dir does not exist. | |||
| """ | |||
| _raw_pipeline_file_name = 'pipeline_profiling_{}.json' | |||
| _parsed_pipeline_file_name = 'minddata_pipeline_raw_{}.csv' | |||
| _col_names = [ | |||
| 'op_id', 'op_type', 'num_workers', 'output_queue_size', | |||
| 'output_queue_average_size', 'output_queue_length', | |||
| 'output_queue_usage_rate', 'sample_interval', 'parent_id', 'children_id' | |||
| ] | |||
| def __init__(self, source_dir, device_id, output_path='./'): | |||
| self._device_id = device_id | |||
| self._pipeline_path = self._get_pipeline_path(source_dir) | |||
| self._save_path = self._get_save_path(output_path) | |||
| @property | |||
| def save_path(self): | |||
| """ | |||
| The property of save path. | |||
| Returns: | |||
| str, the save path. | |||
| """ | |||
| return self._save_path | |||
| def parse(self): | |||
| """ | |||
| Parse the minddata pipeline files. | |||
| Raises: | |||
| ProfilerRawFileException: If fails to parse the raw file of | |||
| minddata pipeline or the file is empty. | |||
| """ | |||
| with open(self._pipeline_path, 'r') as file: | |||
| try: | |||
| pipeline_info = json.load(file) | |||
| except (json.JSONDecodeError, TypeError) as err: | |||
| logger.warning(err) | |||
| raise ProfilerRawFileException( | |||
| 'Fail to parse minddata pipeline file.' | |||
| ) | |||
| if not pipeline_info: | |||
| logger.warning('The minddata pipeline file is empty.') | |||
| raise ProfilerRawFileException( | |||
| 'The minddata pipeline file is empty.' | |||
| ) | |||
| self._parse_and_save(pipeline_info) | |||
| def _get_pipeline_path(self, source_dir): | |||
| """ | |||
| Get the minddata pipeline file path. | |||
| Args: | |||
| source_dir (str): The minddata pipeline source dir. | |||
| Returns: | |||
| str, the minddata pipeline file path. | |||
| """ | |||
| pipeline_path = os.path.join( | |||
| source_dir, | |||
| self._raw_pipeline_file_name.format(self._device_id) | |||
| ) | |||
| try: | |||
| pipeline_path = validate_and_normalize_path(pipeline_path) | |||
| except RuntimeError: | |||
| logger.warning('Minddata pipeline file is invalid.') | |||
| raise ProfilerPathErrorException('Minddata pipeline file is invalid.') | |||
| if not os.path.isfile(pipeline_path): | |||
| logger.warning( | |||
| 'The minddata pipeline file <%s> not found.', pipeline_path | |||
| ) | |||
| raise ProfilerFileNotFoundException(pipeline_path) | |||
| return pipeline_path | |||
| def _get_save_path(self, output_path): | |||
| """ | |||
| Get the save path. | |||
| Args: | |||
| output_path (str): The output dir. | |||
| Returns: | |||
| str, the save path. | |||
| """ | |||
| try: | |||
| output_dir = validate_and_normalize_path(output_path) | |||
| except ValidationError: | |||
| logger.warning('Output path is invalid.') | |||
| raise ProfilerPathErrorException('Output path is invalid.') | |||
| if not os.path.isdir(output_dir): | |||
| logger.warning('The output dir <%s> not found.', output_dir) | |||
| raise ProfilerDirNotFoundException(output_dir) | |||
| return os.path.join( | |||
| output_dir, self._parsed_pipeline_file_name.format(self._device_id) | |||
| ) | |||
| def _parse_and_save(self, pipeline_info): | |||
| """ | |||
| Parse and save the parsed minddata pipeline file. | |||
| Args: | |||
| pipeline_info (dict): The pipeline info reads from the raw file of | |||
| the minddata pipeline. | |||
| Raises: | |||
| ProfilerRawFileException: If the format of minddata pipeline raw | |||
| file is wrong. | |||
| """ | |||
| sample_interval = pipeline_info.get('sampling_interval') | |||
| op_info = pipeline_info.get('op_info') | |||
| if sample_interval is None or not op_info: | |||
| raise ProfilerRawFileException( | |||
| 'The format of minddata pipeline raw file is wrong.' | |||
| ) | |||
| op_id_info_cache = {} | |||
| for item in op_info: | |||
| op_id_info_cache[item.get('op_id')] = item | |||
| with open(self._save_path, 'w') as save_file: | |||
| csv_writer = csv.writer(save_file) | |||
| csv_writer.writerow(self._col_names) | |||
| self._parse_and_save_op_info( | |||
| csv_writer, op_id_info_cache, sample_interval | |||
| ) | |||
| def _parse_and_save_op_info(self, csv_writer, op_id_info_cache, | |||
| sample_interval): | |||
| """ | |||
| Parse and save the minddata pipeline operator information. | |||
| Args: | |||
| csv_writer (csv.writer): The csv writer. | |||
| op_id_info_cache (dict): The operator id and information cache. | |||
| sample_interval (int): The sample interval. | |||
| Raises: | |||
| ProfilerRawFileException: If the operator that id is 0 does not exist. | |||
| """ | |||
| queue = Queue() | |||
| root_node = op_id_info_cache.get(0) | |||
| if not root_node: | |||
| raise ProfilerRawFileException( | |||
| 'The format of minddata pipeline raw file is wrong, ' | |||
| 'the operator that id is 0 does not exist.' | |||
| ) | |||
| root_node['parent_id'] = None | |||
| queue.put_nowait(root_node) | |||
| while not queue.empty(): | |||
| node = queue.get_nowait() | |||
| self._update_child_node(node, op_id_info_cache) | |||
| csv_writer.writerow(self._get_op_info(node, sample_interval)) | |||
| op_id = node.get('op_id') | |||
| children_ids = node.get('children') | |||
| if not children_ids: | |||
| continue | |||
| for child_op_id in children_ids: | |||
| sub_node = op_id_info_cache.get(child_op_id) | |||
| sub_node['parent_id'] = op_id | |||
| queue.put_nowait(sub_node) | |||
| def _update_child_node(self, node, op_id_info_cache): | |||
| """ | |||
| Updates the child node information of the operator. | |||
| Args: | |||
| node (dict): The node represents an operator. | |||
| op_id_info_cache (dict): The operator id and information cache. | |||
| """ | |||
| child_op_ids = node.get('children') | |||
| if not child_op_ids: | |||
| return | |||
| queue = Queue() | |||
| self._cp_list_item_to_queue(child_op_ids, queue) | |||
| new_child_op_ids = [] | |||
| while not queue.empty(): | |||
| child_op_id = queue.get_nowait() | |||
| child_node = op_id_info_cache.get(child_op_id) | |||
| if child_node is None: | |||
| continue | |||
| metrics = child_node.get('metrics') | |||
| if not metrics or not metrics.get('output_queue'): | |||
| op_ids = child_node.get('children') | |||
| if op_ids: | |||
| self._cp_list_item_to_queue(op_ids, queue) | |||
| else: | |||
| new_child_op_ids.append(child_op_id) | |||
| node['children'] = new_child_op_ids | |||
| def _get_op_info(self, op_node, sample_interval): | |||
| """ | |||
| Get the operator information. | |||
| Args: | |||
| op_node (dict): The node represents an operator. | |||
| sample_interval (int): The sample interval. | |||
| Returns: | |||
| list[str, int, float], the operator information. | |||
| """ | |||
| queue_size = None | |||
| queue_average_size = None | |||
| queue_length = None | |||
| queue_usage_rate = None | |||
| metrics = op_node.get('metrics') | |||
| if metrics: | |||
| output_queue = metrics.get('output_queue') | |||
| if output_queue: | |||
| queue_size = output_queue.get('size') | |||
| queue_average_size = sum(queue_size) / len(queue_size) | |||
| queue_length = output_queue.get('length') | |||
| queue_usage_rate = queue_average_size / queue_length | |||
| children_id = op_node.get('children') | |||
| op_info = [ | |||
| op_node.get('op_id'), | |||
| op_node.get('op_type'), | |||
| op_node.get('num_workers'), | |||
| queue_size, | |||
| queue_average_size, | |||
| queue_length, | |||
| queue_usage_rate, | |||
| sample_interval, | |||
| op_node.get('parent_id'), | |||
| children_id if children_id else None | |||
| ] | |||
| return op_info | |||
| def _cp_list_item_to_queue(self, inner_list, queue): | |||
| """ | |||
| Copy the contents of a list to a queue. | |||
| Args: | |||
| inner_list (list): The list. | |||
| queue (Queue): The target queue. | |||
| """ | |||
| for item in inner_list: | |||
| queue.put_nowait(item) | |||
| @@ -0,0 +1,245 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Op compute time files parser.""" | |||
| import os | |||
| from mindspore.profiler.common.util import fwrite_format | |||
| from mindspore.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||
| ProfilerIOException | |||
| from mindspore import log as logger | |||
| from mindspore.profiler.common.validator.validate_path import validate_and_normalize_path | |||
| from mindspore.profiler.parser.container import HWTSContainer | |||
| TIMELINE_FILE_COLUMN_TITLE = 'op_name, stream_id, start_time(ms), duration(ms)' | |||
| class OPComputeTimeParser: | |||
| """ | |||
| Join hwts info and framework info, get op time info, and output to the result file. | |||
| Args: | |||
| hwts_output_file (str): The file path of hwts_output_file. Such as: './output_format_data_hwts_0.txt". | |||
| output_filename (str): The output data file path and name. Such as: './output_op_compute_time_0.txt'. | |||
| op_task_info (dict): The task and op relation info. The format: {task_id, [opname, stream_id, block dim]}. | |||
| """ | |||
| _dst_file_title = 'title:op compute time' | |||
| _dst_file_column_title = 'op_name compute_time(ms) stream_id' | |||
| _dst_file_column_title += '\n------------ --------------- ---------' | |||
| def __init__(self, hwts_output_file, output_filename, op_task_info, | |||
| output_path, device_id): | |||
| hwts_output_file = validate_and_normalize_path(hwts_output_file) | |||
| self._hwts_output_file = hwts_output_file | |||
| self._output_filename = output_filename | |||
| self._op_task_info = op_task_info | |||
| self._output_path = output_path | |||
| self._device_id = device_id | |||
| self._min_cycle_counter = float("inf") | |||
| def _get_op_task_id_map(self): | |||
| """ | |||
| Read hwts data file, get the task time info. | |||
| Returns: | |||
| list: all hwts task time info. | |||
| """ | |||
| op_map_result = [] | |||
| hwts_list = [] | |||
| if not os.path.exists(self._hwts_output_file): | |||
| logger.error('The hwts output file does not exist.') | |||
| raise ProfilerFileNotFoundException('hwts output file') | |||
| with open(self._hwts_output_file, 'r') as data_file: | |||
| lines = data_file.readlines() | |||
| for line in lines: | |||
| if line.startswith("Start of task") or line.startswith("End of task"): | |||
| line_split = line.split() | |||
| container = HWTSContainer(line_split) | |||
| hwts_list.append(container) | |||
| # hwts op map by taskId | |||
| for hwts in hwts_list: | |||
| if hwts.task_id in self._op_task_info.keys(): | |||
| hwts.op_name = self._op_task_info[hwts.task_id] | |||
| op_map_result.append(hwts) | |||
| return op_map_result | |||
| def execute(self): | |||
| """Execute the parser, compute all op, get op time, and write it to the output file.""" | |||
| # Calculate the execution time of operators, | |||
| # and update the minimum cycle counter. | |||
| tmp_result_data = self._calculate_op_execution_time() | |||
| # Convert time units from nanoseconds to milliseconds. | |||
| # The unit of the cycle counter is 10 nanoseconds. | |||
| op_name_time_dict = {} | |||
| op_name_stream_dict = {} | |||
| op_name_count_dict = {} | |||
| op_name_task_dict = {} | |||
| op_name_start_time = {} | |||
| self._convert_op_time_unit( | |||
| tmp_result_data, op_name_time_dict, op_name_stream_dict, | |||
| op_name_count_dict, op_name_task_dict, op_name_start_time | |||
| ) | |||
| result_data = "" | |||
| total_time = 0 | |||
| for op_name, time in op_name_time_dict.items(): | |||
| if op_name in op_name_stream_dict.keys(): | |||
| stream_id = op_name_stream_dict[op_name] | |||
| avg_time = time / op_name_count_dict[op_name] | |||
| total_time += avg_time | |||
| result_data += ("%s %s %s\n" %(op_name, str(avg_time), stream_id)) | |||
| result_data += ("total op %s 0" %(str(total_time))) | |||
| timeline_data = [] | |||
| for op_name, time in op_name_time_dict.items(): | |||
| if op_name in op_name_stream_dict.keys(): | |||
| stream_id = op_name_stream_dict[op_name] | |||
| start_time_list = op_name_start_time.get(op_name) | |||
| for (start_time, duration) in start_time_list: | |||
| timeline_data.append([op_name, stream_id, start_time, duration]) | |||
| # Write the metadata of operators into the file, | |||
| # including operator name, average time, and stream id. | |||
| self._write_op_time_into_file(result_data) | |||
| # Write the timeline data into file, | |||
| # including operator name, stream id, start time, and duration. | |||
| self._write_timeline_data_into_file(timeline_data) | |||
| def _write_op_time_into_file(self, result_data): | |||
| """ | |||
| Write the metadata of operators into the file, including | |||
| op name, average time, and stream id. | |||
| Args: | |||
| result_data (str): The metadata to be written into the file. | |||
| 'op_name_1', 'avg_time_1', 'stream_id_1', | |||
| 'op_name_2', 'avg_time_2', 'stream_id_2', | |||
| ... | |||
| """ | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_title, is_start=True) | |||
| fwrite_format(self._output_filename, data_source=self._dst_file_column_title) | |||
| fwrite_format(self._output_filename, data_source=result_data) | |||
| def _write_timeline_data_into_file(self, timeline_data): | |||
| """ | |||
| Write the timeline information into the file, including | |||
| operator name, stream id, start time and duration. | |||
| Args: | |||
| timeline_data (list): The metadata to be written into the file. | |||
| [ | |||
| ['op_name_1', 'stream_id_1', 'start_time_1', 'durarion_1'], | |||
| ['op_name_2', 'stream_id_2', 'start_time_2', 'durarion_2'], | |||
| [...] | |||
| ] | |||
| """ | |||
| # sorted by start times | |||
| timeline_data.sort(key=lambda x: float(x[2])) | |||
| filename = 'output_timeline_data_{}.txt'.format(self._device_id) | |||
| file_path = os.path.join(self._output_path, filename) | |||
| file_path = validate_and_normalize_path(file_path) | |||
| # write to file | |||
| try: | |||
| with open(file_path, 'w') as f_obj: | |||
| f_obj.write(TIMELINE_FILE_COLUMN_TITLE + '\n') | |||
| for timeline in timeline_data: | |||
| timeline = [str(item) for item in timeline] | |||
| f_obj.write(','.join(timeline) + '\n') | |||
| except (IOError, OSError) as err: | |||
| logger.error('Error occurred when writing intermediate timeline file: %s', err) | |||
| raise ProfilerIOException | |||
| def _calculate_op_execution_time(self): | |||
| """ | |||
| Calculate the execution time of each operator. | |||
| Returns: | |||
| list, including the intermediate data of op execution time. | |||
| """ | |||
| tmp_result_data = [] | |||
| op_map_list = self._get_op_task_id_map() | |||
| cur_index = 0 | |||
| length = len(op_map_list) | |||
| min_cycle_counter = float("inf") | |||
| while cur_index < length: | |||
| if cur_index + 1 == length: | |||
| break | |||
| op_start = op_map_list[cur_index] | |||
| op_end = op_map_list[cur_index + 1] | |||
| if op_start.status == "Start" and op_end.status == "End" \ | |||
| and op_start.op_name == op_end.op_name: | |||
| op_start.duration = op_end.cycle_counter - op_start.cycle_counter | |||
| tmp_result_data.append(op_start) | |||
| cur_index += 2 | |||
| if not op_start.op_name.startswith("assign"): | |||
| min_cycle_counter = min(min_cycle_counter, op_start.cycle_counter) | |||
| else: | |||
| cur_index += 1 | |||
| # Update the value of minimum cycle counter. | |||
| self._min_cycle_counter = min_cycle_counter / 1e5 # Convert the time unit from 10ns to 1ms | |||
| return tmp_result_data | |||
| def _convert_op_time_unit(self, op_data_list, op_name_time_dict, op_name_stream_dict, | |||
| op_name_count_dict, op_name_task_dict, op_name_start_time): | |||
| """ | |||
| Calculate the execution time of operator and convert it into millisecond. | |||
| Args: | |||
| op_data_list (list): The list of operator metadata. | |||
| op_name_time_dict (dict): The mapping relation of operator name and its execution time. | |||
| op_name_stream_dict (dict): The mapping relation of operator name and its stream id. | |||
| op_name_count_dict (dict): The mapping relation of operator name and its count. | |||
| op_name_task_dict (dict): The mapping relation of operator name and its task id. | |||
| op_name_start_time (dict): The mapping relation of operator name and its start time. | |||
| """ | |||
| factor = 1e5 | |||
| for item in op_data_list: | |||
| op_name = item.op_name | |||
| # Unit conversion: converting the cycle counter into ms. | |||
| op_start_time_str = str(item.cycle_counter / factor) | |||
| op_duration = item.duration / factor | |||
| op_duration_str = str(item.duration / factor) | |||
| if op_name in op_name_time_dict.keys(): | |||
| op_name_time_dict[op_name] += op_duration | |||
| if item.task_id == op_name_task_dict[op_name]: | |||
| op_name_count_dict[op_name] += 1 | |||
| op_name_start_time[op_name].append( | |||
| (op_start_time_str, op_duration_str) | |||
| ) | |||
| else: | |||
| op_name_time_dict[op_name] = op_duration | |||
| op_name_stream_dict[op_name] = item.stream_id | |||
| op_name_task_dict[op_name] = item.task_id | |||
| op_name_count_dict[op_name] = 1 | |||
| op_name_start_time[op_name] = [] | |||
| op_name_start_time[op_name].append( | |||
| (op_start_time_str, op_duration_str) | |||
| ) | |||
| @property | |||
| def min_cycle_counter(self): | |||
| """Get minimum cycle counter.""" | |||
| return self._min_cycle_counter | |||
| @@ -0,0 +1,382 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """The parser for step trace data.""" | |||
| import csv | |||
| import json | |||
| import os | |||
| import stat | |||
| import struct | |||
| from collections import namedtuple | |||
| from decimal import Decimal | |||
| from mindspore.profiler.common.exceptions.exceptions import ProfilerPathErrorException, \ | |||
| JobIdMismatchException, ProfilerIOException | |||
| from mindspore import log | |||
| from mindspore.profiler.common.util import get_summary_for_step_trace | |||
| StepTraceStruct = namedtuple( | |||
| 'TrainingTraceStruct', ['tag_id', 'task_id', 'stream_id', 'sys_count'] | |||
| ) | |||
| class StepTraceParser: | |||
| """ | |||
| The parser for step trace data. | |||
| Args: | |||
| input_dir (str): The directory that contains original step trace data. | |||
| output_file_path (str): The output file path. | |||
| job_id (int): The job id used to define the start of new step. Default: 0. | |||
| skip_first_step (bool): Whether skip the first step or not. | |||
| """ | |||
| _event_size = 20 | |||
| _fp_tag = 1 | |||
| _bp_tag = 2 | |||
| _end_tag = 255 | |||
| def __init__(self, input_dir, output_file_path, job_id=0, skip_first_step=False): | |||
| self._input_dir = input_dir | |||
| self._output_path = output_file_path | |||
| self._job_id = job_id | |||
| self._skip_first_step = skip_first_step | |||
| self._result = [] | |||
| self._header = [] | |||
| self._step_num = 0 | |||
| self._tag_map = {} | |||
| @property | |||
| def output_file(self): | |||
| """The property of step trace header.""" | |||
| file_name = self._output_path.rsplit('/', 2) | |||
| return file_name[-1] if len(file_name) == 3 else '' | |||
| def show(self): | |||
| """The property of step trace info.""" | |||
| summary_info = {} | |||
| if self._result: | |||
| summary_info = get_summary_for_step_trace(self._result[-1], self._header) | |||
| summary_info['total_steps'] = len(self._result) - 1 | |||
| print('\nStep trace summary info (unit: syscnt):') | |||
| print(summary_info) | |||
| print('\nThe step trace parse result saves under ${summary_dir}/profiler/%s' | |||
| % self.output_file) | |||
| def parse_and_save(self): | |||
| """Parse step trace files and save the result.""" | |||
| try: | |||
| source_files = self._get_step_trace_files() | |||
| self._parse(source_files) | |||
| self._save() | |||
| except IOError as err: | |||
| log.warning(err) | |||
| raise ProfilerIOException() | |||
| else: | |||
| log.info("Finish to save intermediate result for step trace file.") | |||
| def record_point_info(self, point_info, output_path): | |||
| """ | |||
| Record point info into json. | |||
| Args: | |||
| point_info (dict): The point info about tag id and relative op name. | |||
| output_path (str): The output path for saving point info. | |||
| Returns: | |||
| dict, parsed point info. | |||
| """ | |||
| points = { | |||
| 'fp_start': point_info.get(self._fp_tag, ''), | |||
| 'bp_end': point_info.get(self._bp_tag, '') | |||
| } | |||
| try: | |||
| with open(output_path, 'w') as json_file: | |||
| json.dump(points, json_file) | |||
| os.chmod(output_path, stat.S_IREAD) | |||
| except (IOError, OSError) as err: | |||
| log.warning('Failed to save point info. %s', err) | |||
| raise ProfilerIOException | |||
| return points | |||
| def update_tag_op_type_map(self, point_info): | |||
| """ | |||
| update the map from tag id to op type. | |||
| Args: | |||
| point_info (dict): The point info about tag id and relative op name. | |||
| """ | |||
| tag_map = {} | |||
| for tag, op_name in point_info.items(): | |||
| op_type = self._get_op_type(tag, op_name) | |||
| tag_map[tag] = op_type | |||
| log.info("Get tag types for step trace analysis: %s", tag_map) | |||
| self._tag_map = tag_map | |||
| def _get_op_type(self, tag, name): | |||
| """ | |||
| Get op type from tag and name. | |||
| Args: | |||
| tag (int): The tag id. | |||
| name (str): The op name. | |||
| Returns: | |||
| str, the op type. | |||
| """ | |||
| tag_map = {self._fp_tag: 'fp', self._bp_tag: 'bp', self._end_tag: 'end'} | |||
| # get solid tag type | |||
| op_type = tag_map.get(tag, '') | |||
| if op_type: | |||
| return op_type | |||
| # check if the tag is step tag. | |||
| if tag > self._end_tag or tag == 0: | |||
| return 'start' | |||
| # analyze the reduce tag | |||
| op_type = name.rsplit('/', 1)[-1].split('-')[0] | |||
| if not op_type: | |||
| log.warning("Unexpected op name:%s", name) | |||
| return op_type | |||
| def _get_step_trace_files(self): | |||
| """Get step trace files.""" | |||
| # step trace files may under $profiler_dir or $profiler_dir/data | |||
| profiler_dir = self._input_dir | |||
| step_trace_files = self._search_file(profiler_dir) | |||
| if not step_trace_files: | |||
| # try to find step trace files under $profiler_dir/data | |||
| profiler_dir = os.path.join(profiler_dir, 'data') | |||
| step_trace_files = self._search_file(profiler_dir) | |||
| if not step_trace_files: | |||
| raise ProfilerPathErrorException('Training trace file does not exist.') | |||
| return step_trace_files | |||
| @staticmethod | |||
| def _search_file(input_dir): | |||
| """Search step trace file under specific input directory.""" | |||
| # validate input_dir | |||
| if not os.path.isdir(input_dir): | |||
| raise ProfilerPathErrorException( | |||
| '{} does not exist or is not a dir'.format(input_dir) | |||
| ) | |||
| # get step trace files | |||
| files = os.listdir(input_dir) | |||
| step_trace_files = list( | |||
| filter( | |||
| lambda file: file.startswith('training_trace') and not file.endswith('.done'), | |||
| files | |||
| ) | |||
| ) | |||
| # validate result | |||
| if len(step_trace_files) > 1: | |||
| # the format of file name is like | |||
| # `training_trace.46.dev.profiler_default_tag.$id.slice_$number` | |||
| # use the $number as the sorted key | |||
| try: | |||
| step_trace_files.sort(key=lambda path: int(path.rsplit('_', 1)[-1])) | |||
| except ValueError as err: | |||
| log.warning("Unable to parse file names: %s. %s", step_trace_files, err) | |||
| step_trace_files = [] | |||
| file_paths = [os.path.join(input_dir, file) for file in step_trace_files] | |||
| log.info("Find %d step trace files.", len(file_paths)) | |||
| return file_paths | |||
| def _parse(self, source_files): | |||
| """Parse source step trace files.""" | |||
| log.info("Start to parse step trace file.") | |||
| event_info = {} | |||
| for source_file in source_files: | |||
| with open(source_file, 'rb') as handler: | |||
| content = handler.read() | |||
| for step_trace in self._get_next_step_trace(content, event_info): | |||
| if self._skip_first_step: | |||
| self._skip_first_step = False | |||
| continue | |||
| self._record_trace_event(step_trace) | |||
| self._record_average_info() | |||
| log.info("Finish to parse step trace file.") | |||
| def _get_next_step_trace(self, content, event_info): | |||
| """ | |||
| Get next step trace info. | |||
| Args: | |||
| content (bytes): The input step trace info. | |||
| event_info (dict): The event info. | |||
| Returns: | |||
| Generator, return the step trace one by one. | |||
| """ | |||
| for pos in range(0, len(content), 20): | |||
| next_event = self._get_trace_struct(content[pos:pos + self._event_size]) | |||
| self._construct_event_info(next_event, event_info) | |||
| if event_info.get('end'): | |||
| yield event_info | |||
| def _get_trace_struct(self, bin_info): | |||
| """Translate event info to StepTraceStruct.""" | |||
| if len(bin_info) == self._event_size: | |||
| parsed_info = struct.unpack('=QHHQ', bin_info) | |||
| return StepTraceStruct(*parsed_info) | |||
| return None | |||
| def _construct_event_info(self, next_event, event_info): | |||
| """Construct event info according to next_event.""" | |||
| min_job_id = 255 | |||
| step_flag: bool = lambda tag: tag > min_job_id or tag == 0 | |||
| end_flag: bool = lambda tag: tag == min_job_id | |||
| fp_flag: bool = lambda tag: tag == self._fp_tag | |||
| bp_flag: bool = lambda tag: tag == self._bp_tag | |||
| def _on_step_event(): | |||
| """Handle step event.""" | |||
| self._validate_tag_id(tag_id) | |||
| start_time = event_info.get('end', '-') | |||
| event_info.clear() | |||
| event_info['start'] = start_time | |||
| event_info['reduce'] = {} | |||
| def _on_reduce_event(reduce_tag_id): | |||
| """Handle reduce event.""" | |||
| stream_id = next_event.stream_id | |||
| if event_info['reduce'].get(stream_id): | |||
| event_info['reduce'][stream_id].append((reduce_tag_id, sys_count)) | |||
| else: | |||
| event_info['reduce'][stream_id] = [(reduce_tag_id, sys_count)] | |||
| tag_id = next_event.tag_id | |||
| sys_count = next_event.sys_count | |||
| if end_flag(tag_id): | |||
| event_info['end'] = sys_count | |||
| elif step_flag(tag_id): | |||
| _on_step_event() | |||
| elif fp_flag(tag_id): | |||
| event_info['fp'] = sys_count | |||
| elif bp_flag(tag_id): | |||
| event_info['bp'] = sys_count | |||
| else: | |||
| _on_reduce_event(tag_id) | |||
| def _validate_tag_id(self, job_id): | |||
| """Check the job id in source step trace file is same as user set.""" | |||
| if not self._job_id: | |||
| self._job_id = job_id | |||
| elif self._job_id != job_id: | |||
| raise JobIdMismatchException() | |||
| def _record_trace_event(self, step_trace): | |||
| """Record trace event.""" | |||
| self._step_num += 1 | |||
| start_time = step_trace.get('start') | |||
| end_time = step_trace.get('end') | |||
| fp_time = step_trace.get('fp') | |||
| bp_time = step_trace.get('bp') | |||
| if not (start_time and end_time and fp_time and bp_time): | |||
| log.warning("The step %d lacks basic time.", self._step_num) | |||
| return | |||
| if start_time == '-': | |||
| start_time = fp_time | |||
| row_data = { | |||
| 'step_num': self._step_num, | |||
| 'start_point': start_time, | |||
| 'end_point': end_time, | |||
| 'total': end_time - start_time, | |||
| 'fp_point': fp_time, | |||
| 'bp_point': bp_time, | |||
| 'iteration_interval': fp_time - start_time, | |||
| 'fp_and_bp': bp_time - fp_time, | |||
| 'tail': end_time - bp_time | |||
| } | |||
| # update reduce info | |||
| self._update_reduce_info(step_trace, row_data) | |||
| # save the row data | |||
| if not self._header: | |||
| self._header = list(row_data.keys()) | |||
| row_data_list = [row_data.get(header_name, 0) for header_name in self._header] | |||
| self._result.append(row_data_list) | |||
| def _update_reduce_info(self, step_trace, row_data): | |||
| """Extract reduce info.""" | |||
| reduce_time = step_trace.get('reduce', {}) | |||
| for stream_id, time_points in reduce_time.items(): | |||
| time_point_num = len(time_points) | |||
| if time_point_num % 2: | |||
| log.warning("Stream %d has %d reduce time points.", stream_id, time_point_num) | |||
| continue | |||
| for index, point_id in enumerate(range(0, time_point_num, 2)): | |||
| field_name = f'stream_{stream_id}_{index}' | |||
| reduce_info = self._get_single_reduce_event_info( | |||
| field_name, time_points[point_id], time_points[point_id + 1]) | |||
| row_data.update(reduce_info) | |||
| def _get_single_reduce_event_info(self, field_name, start_point, end_point): | |||
| """ | |||
| Get single reduce info. | |||
| Args: | |||
| field_name (str): The field name. | |||
| start_point (Tuple[int, int]): Start point time info, including (tag_id, sys_count). | |||
| end_point (Tuple[int, int]): End point time info, including (tag_id, sys_count). | |||
| Returns: | |||
| dict, reduce info. | |||
| """ | |||
| reduce_info = {} | |||
| if end_point[0] - start_point[0] != 1 or end_point[0] % 2: | |||
| log.warning("Unmatched reduce event <%s, %s>.", start_point, end_point) | |||
| return reduce_info | |||
| op_type = self._tag_map.get(start_point[0]) | |||
| # append field name with op type. | |||
| if not op_type: | |||
| log.warning("Can't recognize the inner type for point tag: %d.", start_point[0]) | |||
| field_name += '_parallel' | |||
| else: | |||
| field_name += '_' + op_type | |||
| reduce_info[field_name] = end_point[1] - start_point[1] | |||
| reduce_info[field_name + '_start_point'] = start_point[1] | |||
| reduce_info[field_name + '_end_point'] = end_point[1] | |||
| return reduce_info | |||
| def _record_average_info(self): | |||
| """Calculate average info.""" | |||
| result_size = len(self._result) | |||
| # calculate average data for each column in result data | |||
| average_data = [0] * len(self._header) | |||
| if result_size >= 2: | |||
| for row_info in self._result[1:]: | |||
| average_data = [ | |||
| Decimal(i) + Decimal(j) for i, j in zip(row_info, average_data) | |||
| ] | |||
| average_data = [ | |||
| round((item / (result_size - 1))) for item in average_data | |||
| ] | |||
| # change step num info in average_data to None | |||
| step_num_index = self._header.index('step_num') | |||
| average_data[step_num_index] = '-' | |||
| self._result.append(average_data) | |||
| log.info("Finish add average info for step trace.") | |||
| def _save(self): | |||
| log.info("Start to save step trace file.") | |||
| if not self._header: | |||
| return | |||
| with open(self._output_path, 'w') as file_handle: | |||
| csv_writer = csv.writer(file_handle) | |||
| csv_writer.writerow(self._header) | |||
| for row_data in self._result: | |||
| csv_writer.writerow(row_data) | |||
| os.chmod(self._output_path, stat.S_IREAD) | |||
| @@ -0,0 +1,417 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Profiling api file.""" | |||
| import os | |||
| import time | |||
| from mindspore import log as logger, context | |||
| from mindspore.communication.management import release | |||
| from mindspore.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \ | |||
| ProfilerIOException, ProfilerException | |||
| from mindspore.profiler.common.util import get_file_names, fwrite_format | |||
| from mindspore.profiler.common.validator.checkparam import \ | |||
| check_bool, check_subgraph | |||
| from mindspore.profiler.common.validator.validate_path import \ | |||
| validate_and_normalize_path | |||
| from mindspore.profiler.parser.aicpu_data_parser import DataPreProcessParser | |||
| from mindspore.profiler.parser.framework_parser import FrameworkParser | |||
| from mindspore.profiler.parser.hwts_log_parser import HWTSLogParser | |||
| from mindspore.profiler.parser.integrator import Integrator | |||
| from mindspore.profiler.parser.integrator import TimelineAnalyser | |||
| from mindspore.profiler.parser.minddata_parser import MinddataParser | |||
| from mindspore.profiler.parser.minddata_pipeline_parser import \ | |||
| MinddataPipelineParser | |||
| from mindspore.profiler.parser.optime_parser import OPComputeTimeParser | |||
| from mindspore.profiler.parser.step_trace_parser import StepTraceParser | |||
| PROFILING_LOG_BASE_PATH = "/var/log/npu/profiling" | |||
| INIT_OP_NAME = 'Default/InitDataSetQueue' | |||
| class Profiler: | |||
| """ | |||
| Performance profiling API. | |||
| Enable MindSpore users to profile the performance of neural network. | |||
| Args: | |||
| subgraph (str): Define which subgraph to monitor and analyse, can be 'all', 'Default', 'Gradients'. | |||
| is_detail (bool): Whether to show profiling data for op_instance level, only show optype level if False. | |||
| is_show_op_path (bool): Whether to save the full path for each op instance. | |||
| output_path (str): Output data path. | |||
| optypes_to_deal (str): Op type names, the data of which optype should be collected and analysed, | |||
| will deal with all op if null; Different op types should be seperated by comma. | |||
| optypes_not_deal (str): Op type names, the data of which optype will not be collected and analysed; | |||
| Different op types should be seperated by comma. | |||
| Examples: | |||
| >>> from mindspore.profiler import Profiler | |||
| >>> import mindspore.context | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||
| >>> device_id=int(os.environ["DEVICE_ID"])) | |||
| >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') | |||
| >>> model = Model() | |||
| >>> model.train() | |||
| >>> profiler.analyse() | |||
| """ | |||
| _base_profiling_container_path = "/var/log/npu/profiling/container" | |||
| _hwts_output_filename_target = "output_format_data_hwts_" | |||
| _opcompute_output_filename_target = "output_op_compute_time_" | |||
| _aicpu_op_output_filename_target = "output_data_preprocess_aicpu_" | |||
| def __init__(self, subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data', | |||
| optypes_to_deal='', optypes_not_deal='Variable', job_id=""): | |||
| # get device_id and device_target | |||
| self._get_devid_and_devtarget() | |||
| self._container_path = os.path.join(self._base_profiling_container_path, self._dev_id) | |||
| data_path = os.path.join(self._container_path, "data") | |||
| if not os.path.exists(data_path): | |||
| os.makedirs(data_path, exist_ok=True) | |||
| self._output_path = validate_and_normalize_path(output_path) | |||
| self._output_path = os.path.join(self._output_path, "profiler") | |||
| if not os.path.exists(self._output_path): | |||
| os.makedirs(self._output_path, exist_ok=True) | |||
| os.environ['PROFILING_MODE'] = 'true' | |||
| os.environ['PROFILING_OPTIONS'] = 'training_trace:task_trace' | |||
| os.environ['MINDDATA_PROFILING_DIR'] = self._output_path | |||
| os.environ['DEVICE_ID'] = self._dev_id | |||
| os.environ['AICPU_PROFILING_MODE'] = 'true' | |||
| os.environ['PROFILING_DIR'] = str(self._container_path) | |||
| # use context interface to open profiling, for the new mindspore version(after 2020.5.21) | |||
| context.set_context(enable_profiling=True, profiling_options="training_trace:task_trace") | |||
| self._subgraph = check_subgraph(subgraph) | |||
| self._valid_optype_name = optypes_to_deal.split(",") if optypes_to_deal else [] | |||
| self._filt_optype_names = optypes_not_deal.split(",") if optypes_not_deal else [] | |||
| self._detail = check_bool(is_detail, 'is_detail') | |||
| self._withfullpath = check_bool(is_show_op_path, 'is_show_op_path') | |||
| self._profiling_job_id = job_id | |||
| # add job id env through user input later | |||
| self._job_id_env = 0 | |||
| self._start_time = int(time.time() * 10000000) | |||
| logger.info("Profiling: profiling start time: %d", self._start_time) | |||
| def analyse(self): | |||
| """ | |||
| Collect and analyse performance data, called after training or during training. | |||
| Examples: | |||
| >>> from mindspore.profiler import Profiler | |||
| >>> import mindspore.context | |||
| >>> context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", | |||
| >>> device_id=int(os.environ["DEVICE_ID"])) | |||
| >>> profiler = Profiler(subgraph='all', is_detail=True, is_show_op_path=False, output_path='./data') | |||
| >>> model = Model() | |||
| >>> model.train() | |||
| >>> profiler.analyse() | |||
| """ | |||
| release() | |||
| job_id = self._get_profiling_job_id() | |||
| logger.info("Profiling: job id is %s ", job_id) | |||
| source_path = os.path.join(PROFILING_LOG_BASE_PATH, job_id) | |||
| # parse hwts.log.data.45.dev file, and get task profiling data | |||
| hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" | |||
| hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) | |||
| hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) | |||
| result = hwtslog_parser.execute() | |||
| if not result: | |||
| logger.error("Profiling: fail to parse hwts log file.") | |||
| return | |||
| # parse Framework file, and get the relation of op and tasks | |||
| framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) | |||
| framework_parser.parse() | |||
| op_task_dict = framework_parser.to_task_id_full_op_name_dict() | |||
| if not op_task_dict: | |||
| logger.error("Profiling: fail to parse framework files.") | |||
| return | |||
| # get op compute time from hwts data and framework data, write output_op_compute_time.txt | |||
| opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" | |||
| opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) | |||
| optime_parser = OPComputeTimeParser( | |||
| hwts_output_filename, opcompute_output_filename, | |||
| op_task_dict, self._output_path, self._dev_id | |||
| ) | |||
| optime_parser.execute() | |||
| # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt | |||
| output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" | |||
| output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu) | |||
| aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu) | |||
| aicpu_data_parser.execute() | |||
| # Parsing minddata AICPU profiling | |||
| MinddataParser.execute(source_path, self._output_path, self._dev_id) | |||
| # parse minddata pipeline operator and queue | |||
| try: | |||
| pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path) | |||
| pipeline_parser.parse() | |||
| except ProfilerException as err: | |||
| logger.warning(err.message) | |||
| # analyse op compute time info | |||
| try: | |||
| self._analyser_op_info() | |||
| except ProfilerException as err: | |||
| logger.warning(err.message) | |||
| # analyse step trace info | |||
| try: | |||
| self._analyse_step_trace(source_path, framework_parser) | |||
| except ProfilerException as err: | |||
| logger.warning(err.message) | |||
| # analyse timeline info | |||
| try: | |||
| self._analyse_timeline(aicpu_data_parser, optime_parser) | |||
| except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err: | |||
| logger.warning('Fail to write timeline data: %s', err) | |||
| def _analyse_step_trace(self, source_path, framework_parser): | |||
| """ | |||
| Analyse step trace data and save the result. | |||
| Args: | |||
| source_path (str): The directory that contains the step trace original data. | |||
| framework_parser (FrameworkParser): The framework parse instance. | |||
| """ | |||
| logger.info("Begin to parse step trace.") | |||
| # construct output path | |||
| step_trace_intermediate_file_path = os.path.join( | |||
| self._output_path, | |||
| f'step_trace_raw_{self._dev_id}_detail_time.csv' | |||
| ) | |||
| point_info_file_path = os.path.join( | |||
| self._output_path, | |||
| 'step_trace_point_info.json' | |||
| ) | |||
| # whether keep the first step | |||
| skip_first_step_flag = framework_parser.check_op_name(INIT_OP_NAME) | |||
| point_info = framework_parser.point_info | |||
| # parser the step trace files and save the result to disk | |||
| parser = StepTraceParser(input_dir=source_path, | |||
| output_file_path=step_trace_intermediate_file_path, | |||
| job_id=self._job_id_env, | |||
| skip_first_step=skip_first_step_flag) | |||
| parser.update_tag_op_type_map(point_info) | |||
| parser.parse_and_save() | |||
| point_info = parser.record_point_info(point_info, point_info_file_path) | |||
| # print parser result | |||
| parser.show() | |||
| logger.info("Finish saving the intermediate result: %s", step_trace_intermediate_file_path) | |||
| logger.info("The point info is: %s", point_info) | |||
| def _analyse_timeline(self, aicpu_parser, optime_parser): | |||
| """ | |||
| Analyse and parse timeline info. | |||
| Args: | |||
| aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator | |||
| execution time calculation. | |||
| optime_parser (OPComputeTimeParserParser): The parser instance for AI Core | |||
| operator execution time calculation. | |||
| """ | |||
| timeline_analyser = TimelineAnalyser(self._output_path, self._dev_id) | |||
| # Get framework info | |||
| integrator = Integrator(self._output_path, self._dev_id) | |||
| aicore_detail_data = integrator.get_aicore_detail_data() | |||
| aicore_detail_data_size = len(aicore_detail_data) | |||
| col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph', | |||
| 'full_op_name', 'op_info'] | |||
| framework_info = { | |||
| 'col_name': col_names, | |||
| 'object': aicore_detail_data, | |||
| 'size': aicore_detail_data_size | |||
| } | |||
| all_reduce_info = integrator.query_for_all_reduce() | |||
| # Get timeline info | |||
| logger.info('Start writing timeline info...') | |||
| logger.info('Warm Prompt: It could take a few minutes if you are training ' | |||
| 'with a complex network or more than 10 steps.') | |||
| # Add info into timeline, such as AI CPU, AllReduce, framework info. | |||
| aicpu_info = aicpu_parser.query_aicpu_data() | |||
| min_cycle_counter = min(aicpu_parser.min_cycle_counter, optime_parser.min_cycle_counter) | |||
| timeline_analyser.init_timeline(all_reduce_info, framework_info, aicpu_info, min_cycle_counter) | |||
| timeline_analyser.write_timeline() | |||
| timeline_analyser.write_timeline_summary() | |||
| def __del__(self): | |||
| """Disable the profiling collection service, called after training.""" | |||
| os.environ['PROFILING_MODE'] = str("false") | |||
| context.set_context(enable_profiling=False) | |||
| def _get_profiling_job_id(self): | |||
| """Get profiling job id, which was generated by ada service. | |||
| Returns: | |||
| str: profiling jon id. | |||
| """ | |||
| if self._profiling_job_id: | |||
| return self._profiling_job_id | |||
| job_id = "" | |||
| cmd = "ls -t " + PROFILING_LOG_BASE_PATH + "|grep JOB|awk '{print $1}'" | |||
| r = os.popen(cmd) | |||
| profiling_job_dirs = r.readlines() | |||
| r.close() | |||
| for item in profiling_job_dirs: | |||
| path = os.path.join(PROFILING_LOG_BASE_PATH, item.strip()) | |||
| log_file = get_file_names(path, "host_start.log") | |||
| if not log_file: | |||
| logger.error("Profiling: job path %s, host_start.log not exist.", path) | |||
| continue | |||
| log_file = os.path.join(path, log_file[0]) | |||
| item_dict = self._parse_host_start_log(log_file) | |||
| if not item_dict: | |||
| logger.error("Profiling: job path %s, fail to get job start info.", path) | |||
| continue | |||
| if self._start_time > int(item_dict["start_time"]): | |||
| logger.info("Profiling: job path %s, start_time %s, training start_time %d.", | |||
| path, item_dict["start_time"], self._start_time) | |||
| break | |||
| if self._dev_id != item_dict["device_id"]: | |||
| logger.info("Profiling: job path %s, dev id %s, training device id %s.", | |||
| path, item_dict["device_id"], self._dev_id) | |||
| continue | |||
| job_id = item.strip() | |||
| break | |||
| if not job_id: | |||
| msg = "Fail to get profiling job, please check whether job dir was generated" | |||
| raise RuntimeError(msg) | |||
| return job_id | |||
| def _parse_host_start_log(self, input_file): | |||
| """ | |||
| Parse host start log file, get the device id and start time of the job. | |||
| Args: | |||
| input_file (str): The file path of the host start log file. | |||
| Returns: | |||
| dict, job start time and device id. | |||
| """ | |||
| item_dict = {} | |||
| for line in open(input_file): | |||
| if "Device" in line: | |||
| item_dict["device_id"] = line[7:len(line)-2] | |||
| elif "clock_realtime" in line: | |||
| item_dict["start_time"] = line[16:len(line)-3] | |||
| return item_dict | |||
| def _analyser_op_info(self): | |||
| """Analyse the operator information.""" | |||
| integrator = Integrator(self._output_path, self._dev_id) | |||
| integrator.integrate() | |||
| aicore_type_result = self._query_op_type_info() | |||
| detail_file_path = os.path.join( | |||
| self._output_path, | |||
| 'output_op_compute_time_detail_{}.txt'.format(self._dev_id) | |||
| ) | |||
| fwrite_format(detail_file_path, data_source='title:op compute time') | |||
| display_names = [ | |||
| 'optype_name', 'compute_time(ms, per-step)', | |||
| 'called_times(per-step)', 'percent' | |||
| ] | |||
| fwrite_format(detail_file_path, data_source=" ".join(display_names), is_print=True) | |||
| fwrite_format(detail_file_path, data_source=aicore_type_result, is_print=True) | |||
| if self._detail: | |||
| op_type_order = [item[0] for item in aicore_type_result] | |||
| aicore_detail_result = self._query_op_detail_info(op_type_order) | |||
| fwrite_format(detail_file_path, data_source='', is_print=True) | |||
| fwrite_format(detail_file_path, data_source='Detail:', is_print=True) | |||
| col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph', | |||
| 'full_op_name', 'op_info'] | |||
| fwrite_format(detail_file_path, data_source=" ".join(col_names), is_print=True) | |||
| fwrite_format(detail_file_path, data_source=aicore_detail_result, is_print=True) | |||
| def _query_op_type_info(self): | |||
| """ | |||
| Query AICORE operator type information. | |||
| Returns: | |||
| list[list], the AICORE operator type and execution time information. | |||
| """ | |||
| integrator = Integrator(self._output_path, self._dev_id) | |||
| return integrator.get_aicore_data() | |||
| def _query_op_detail_info(self, op_type_order): | |||
| """ | |||
| Query AICORE operator detail information. | |||
| Args: | |||
| op_type_order(list): The name of the op type in order. | |||
| Returns: | |||
| dict, the AICORE operator detail information. | |||
| """ | |||
| op_type_condition = {} | |||
| if self._valid_optype_name: | |||
| op_type_condition['in'] = self._valid_optype_name | |||
| if self._filt_optype_names: | |||
| op_type_condition['not_in'] = self._filt_optype_names | |||
| subgraph_condition = {} | |||
| if self._subgraph != 'all': | |||
| subgraph_condition['in'] = [self._subgraph] | |||
| integrator = Integrator(self._output_path, self._dev_id) | |||
| return integrator.get_aicore_detail_data() | |||
| def _get_devid_and_devtarget(self): | |||
| """Get device id and target of this training.""" | |||
| device_target = "" | |||
| dev_id = "" | |||
| try: | |||
| dev_id = str(context.get_context("device_id")) | |||
| device_target = context.get_context("device_target") | |||
| except ValueError as err: | |||
| logger.error("Profiling: fail to get context, %s", err) | |||
| if not dev_id or not dev_id.isdigit(): | |||
| dev_id = os.getenv('DEVICE_ID') | |||
| if not dev_id or not dev_id.isdigit(): | |||
| dev_id = "0" | |||
| logger.error("Fail to get DEVICE_ID, use 0 instead.") | |||
| if device_target and device_target != "Davinci" \ | |||
| and device_target != "Ascend": | |||
| msg = "Profiling: unsupport backend: %s" % device_target | |||
| raise RuntimeError(msg) | |||
| self._dev_id = dev_id | |||