|
|
|
@@ -1532,7 +1532,8 @@ class ParallelConcat(PrimitiveWithInfer): |
|
|
|
The input tensors are all required to have size 1 in the first dimension. |
|
|
|
|
|
|
|
Inputs: |
|
|
|
- **values** (tuple, list) - Tuple or list of input tensors. |
|
|
|
- **values** (tuple, list) - Tuple or list of input tensors. The data type and shape of these |
|
|
|
tensors must be same. |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, data type same as `values`. |
|
|
|
@@ -1542,6 +1543,7 @@ class ParallelConcat(PrimitiveWithInfer): |
|
|
|
>>> data2 = Tensor(np.array([[2, 1]]).astype(np.int32)) |
|
|
|
>>> op = P.ParallelConcat() |
|
|
|
>>> output = op((data1, data2)) |
|
|
|
[[0, 1], [2, 1]] |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
@@ -1553,14 +1555,15 @@ class ParallelConcat(PrimitiveWithInfer): |
|
|
|
x_type = values['dtype'] |
|
|
|
|
|
|
|
validator.check_integer(f'x_shp length', len(x_shp), 1, Rel.GE, self.name) |
|
|
|
|
|
|
|
args = {f"x_type[{i}]": elem for i, elem in enumerate(x_type)} |
|
|
|
validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), self.name) |
|
|
|
|
|
|
|
first_elem = x_shp[0] |
|
|
|
args = {} |
|
|
|
for i, elem in enumerate(x_shp[1:]): |
|
|
|
j = i + 1 |
|
|
|
args[f'x_type[{j}]'] = x_type[j] |
|
|
|
validator.check_integer(f'x_shp[{j}][0]', elem[0], 1, Rel.EQ, self.name) |
|
|
|
validator.check(f"x_shp[0] shape", first_elem, f"x_shp[{j}] shape", elem, Rel.EQ, self.name) |
|
|
|
validator.check_tensor_type_same(args, mstype.number_type + (mstype.bool_,), self.name) |
|
|
|
|
|
|
|
ret_shp = x_shp[0].copy() |
|
|
|
ret_shp[0] = len(x_shp) |
|
|
|
|