From: @wangshuide2020 Reviewed-by: Signed-off-by:tags/v1.1.0
| @@ -147,8 +147,9 @@ class ELU(Cell): | |||
| Examples: | |||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float32) | |||
| >>> elu = nn.ELU() | |||
| >>> elu(input_x) | |||
| >>> result = elu(input_x) | |||
| >>> print(result) | |||
| [-0.63212055 -0.86466473 0 2 1] | |||
| """ | |||
| def __init__(self, alpha=1.0): | |||
| @@ -446,8 +447,9 @@ class HSwish(Cell): | |||
| Examples: | |||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | |||
| >>> hswish = nn.HSwish() | |||
| >>> hswish(input_x) | |||
| >>> result = hswish(input_x) | |||
| >>> print(result) | |||
| [-0.3333 -0.3333 0 1.666 0.6665] | |||
| """ | |||
| def __init__(self): | |||
| @@ -480,8 +482,9 @@ class HSigmoid(Cell): | |||
| Examples: | |||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | |||
| >>> hsigmoid = nn.HSigmoid() | |||
| >>> hsigmoid(input_x) | |||
| >>> result = hsigmoid(input_x) | |||
| >>> print(result) | |||
| [0.3333 0.1666 0.5 0.833 0.6665] | |||
| """ | |||
| def __init__(self): | |||
| @@ -162,9 +162,13 @@ class EmbeddingLookup(Cell): | |||
| Examples: | |||
| >>> input_indices = Tensor(np.array([[1, 0], [3, 2]]), mindspore.int32) | |||
| >>> out = nn.EmbeddingLookup(4,2)(input_indices) | |||
| >>> output.shape | |||
| (2, 2, 2) | |||
| >>> result = nn.EmbeddingLookup(4,2)(input_indices) | |||
| >>> print(result) | |||
| [[[ 0.00856617 0.01039034] | |||
| [ 0.00196276 -0.00094072]] | |||
| [[ 0.01279703 0.00078912] | |||
| [ 0.00084863 -0.00742412]]] | |||
| """ | |||
| BATCH_SLICE = "batch_slice" | |||
| FIELD_SLICE = "field_slice" | |||
| @@ -290,9 +290,11 @@ class MSSSIM(Cell): | |||
| Examples: | |||
| >>> net = nn.MSSSIM(power_factors=(0.033, 0.033, 0.033)) | |||
| >>> img1 = Tensor(np.random.random((1,3,128,128))) | |||
| >>> img2 = Tensor(np.random.random((1,3,128,128))) | |||
| >>> msssim = net(img1, img2) | |||
| >>> img1 = Tensor(np.random.random((1, 3, 128, 128))) | |||
| >>> img2 = Tensor(np.random.random((1, 3, 128, 128))) | |||
| >>> result = net(img1, img2) | |||
| >>> print(result) | |||
| [0.20930639] | |||
| """ | |||
| def __init__(self, max_val=1.0, power_factors=(0.0448, 0.2856, 0.3001, 0.2363, 0.1333), filter_size=11, | |||
| filter_sigma=1.5, k1=0.01, k2=0.03): | |||
| @@ -284,9 +284,13 @@ class BatchNorm1d(_BatchNorm): | |||
| Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out})`. | |||
| Examples: | |||
| >>> net = nn.BatchNorm1d(num_features=16) | |||
| >>> input = Tensor(np.random.randint(0, 255, [3, 16]), mindspore.float32) | |||
| >>> net(input) | |||
| >>> net = nn.BatchNorm1d(num_features=4) | |||
| >>> input = Tensor(np.random.randint(0, 255, [3, 4]), mindspore.float32) | |||
| >>> result = net(input) | |||
| >>> print(result) | |||
| [[ 57.99971 50.99974 220.99889 222.99889 ] | |||
| [106.99947 193.99902 77.99961 101.99949 ] | |||
| [ 85.99957 188.99905 46.99976 226.99887 ]] | |||
| """ | |||
| def __init__(self, | |||
| @@ -367,8 +371,23 @@ class BatchNorm2d(_BatchNorm): | |||
| Examples: | |||
| >>> net = nn.BatchNorm2d(num_features=3) | |||
| >>> input = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32) | |||
| >>> net(input) | |||
| >>> input = Tensor(np.random.randint(0, 255, [1, 3, 4, 4]), mindspore.float32) | |||
| >>> result = net(input) | |||
| >>> print(result) | |||
| [[[[148.99925 148.99925 178.9991 77.99961 ] | |||
| [ 41.99979 97.99951 157.9992 94.99953 ] | |||
| [ 87.99956 158.9992 50.99974 179.9991 ] | |||
| [146.99927 27.99986 119.9994 253.99873 ]] | |||
| [[178.9991 187.99905 190.99904 88.99956 ] | |||
| [213.99893 158.9992 13.99993 200.999 ] | |||
| [224.99887 56.99971 246.99876 239.9988 ] | |||
| [ 97.99951 34.99983 28.99986 57.99971 ]] | |||
| [[ 14.99993 31.99984 136.99931 207.99896 ] | |||
| [180.9991 28.99986 23.99988 71.99964 ] | |||
| [112.99944 36.99981 213.99893 71.99964 ] | |||
| [ 8.99996 162.99919 157.9992 41.99979 ]]]] | |||
| """ | |||
| def __init__(self, | |||
| @@ -88,7 +88,9 @@ class ExponentialDecayLR(LearningRateSchedule): | |||
| >>> decay_steps = 4 | |||
| >>> global_step = Tensor(2, mstype.int32) | |||
| >>> exponential_decay_lr = ExponentialDecayLR(learning_rate, decay_rate, decay_steps) | |||
| >>> exponential_decay_lr(global_step) | |||
| >>> result = exponential_decay_lr(global_step) | |||
| >>> print(result) | |||
| 0.09486833 | |||
| """ | |||
| def __init__(self, learning_rate, decay_rate, decay_steps, is_stair=False): | |||
| super(ExponentialDecayLR, self).__init__() | |||
| @@ -144,7 +146,9 @@ class NaturalExpDecayLR(LearningRateSchedule): | |||
| >>> decay_steps = 4 | |||
| >>> global_step = Tensor(2, mstype.int32) | |||
| >>> natural_exp_decay_lr = NaturalExpDecayLR(learning_rate, decay_rate, decay_steps, True) | |||
| >>> natural_exp_decay_lr(global_step) | |||
| >>> result = natural_exp_decay_lr(global_step) | |||
| >>> print(result) | |||
| 0.016529894 | |||
| """ | |||
| def __init__(self, learning_rate, decay_rate, decay_steps, is_stair=False): | |||
| super(NaturalExpDecayLR, self).__init__() | |||
| @@ -201,7 +205,9 @@ class InverseDecayLR(LearningRateSchedule): | |||
| >>> decay_steps = 4 | |||
| >>> global_step = Tensor(2, mstype.int32) | |||
| >>> inverse_decay_lr = InverseDecayLR(learning_rate, decay_rate, decay_steps, True) | |||
| >>> inverse_decay_lr(global_step) | |||
| >>> result = inverse_decay_lr(global_step) | |||
| >>> print(result) | |||
| 0.06896552 | |||
| """ | |||
| def __init__(self, learning_rate, decay_rate, decay_steps, is_stair=False): | |||
| super(InverseDecayLR, self).__init__() | |||
| @@ -247,7 +253,9 @@ class CosineDecayLR(LearningRateSchedule): | |||
| >>> decay_steps = 4 | |||
| >>> global_steps = Tensor(2, mstype.int32) | |||
| >>> cosine_decay_lr = CosineDecayLR(min_lr, max_lr, decay_steps) | |||
| >>> cosine_decay_lr(global_steps) | |||
| >>> result = cosine_decay_lr(global_steps) | |||
| >>> print(result) | |||
| 0.055 | |||
| """ | |||
| def __init__(self, min_lr, max_lr, decay_steps): | |||
| super(CosineDecayLR, self).__init__() | |||
| @@ -313,7 +321,9 @@ class PolynomialDecayLR(LearningRateSchedule): | |||
| >>> power = 0.5 | |||
| >>> global_step = Tensor(2, mstype.int32) | |||
| >>> polynomial_decay_lr = PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power) | |||
| >>> polynomial_decay_lr(global_step) | |||
| >>> result = polynomial_decay_lr(global_step) | |||
| >>> print(result) | |||
| 0.07363961 | |||
| """ | |||
| def __init__(self, learning_rate, end_learning_rate, decay_steps, power, update_decay_steps=False): | |||
| super(PolynomialDecayLR, self).__init__() | |||
| @@ -379,7 +389,9 @@ class WarmUpLR(LearningRateSchedule): | |||
| >>> warmup_steps = 2 | |||
| >>> global_step = Tensor(2, mstype.int32) | |||
| >>> warmup_lr = WarmUpLR(learning_rate, warmup_steps) | |||
| >>> warmup_lr(global_step) | |||
| >>> result = warmup_lr(global_step) | |||
| >>> print(result) | |||
| 0.1 | |||
| """ | |||
| def __init__(self, learning_rate, warmup_steps): | |||
| super(WarmUpLR, self).__init__() | |||
| @@ -41,6 +41,8 @@ class Accuracy(EvaluationBase): | |||
| >>> metric.clear() | |||
| >>> metric.update(x, y) | |||
| >>> accuracy = metric.eval() | |||
| >>> print(accuracy) | |||
| 0.66666666 | |||
| """ | |||
| def __init__(self, eval_type='classification'): | |||
| super(Accuracy, self).__init__(eval_type) | |||
| @@ -129,7 +129,9 @@ class F1(Fbeta): | |||
| >>> y = Tensor(np.array([1, 0, 1])) | |||
| >>> metric = nn.F1() | |||
| >>> metric.update(x, y) | |||
| >>> f1 = metric.eval() | |||
| >>> result = metric.eval() | |||
| >>> print(result) | |||
| [0.66666667 0.66666667] | |||
| """ | |||
| def __init__(self): | |||
| super(F1, self).__init__(1.0) | |||
| @@ -457,6 +457,8 @@ class HSwish(PrimitiveWithInfer): | |||
| >>> hswish = P.HSwish() | |||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | |||
| >>> result = hswish(input_x) | |||
| >>> print(result) | |||
| [-0.3333 -0.3333 0 1.666 0.6665] | |||
| """ | |||
| @prim_attr_register | |||
| @@ -530,6 +532,8 @@ class HSigmoid(PrimitiveWithInfer): | |||
| >>> hsigmoid = P.HSigmoid() | |||
| >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16) | |||
| >>> result = hsigmoid(input_x) | |||
| >>> print(result) | |||
| [0.3333 0.1666 0.5 0.833 0.6665] | |||
| """ | |||
| @prim_attr_register | |||
| @@ -2755,6 +2759,8 @@ class Gelu(PrimitiveWithInfer): | |||
| >>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32) | |||
| >>> gelu = P.Gelu() | |||
| >>> result = gelu(tensor) | |||
| >>> print(result) | |||
| [0.841192 1.9545976 2.9963627] | |||
| """ | |||
| @prim_attr_register | |||