| @@ -36,7 +36,7 @@ import os | |||||
| import numpy as np | import numpy as np | ||||
| from config import bert_train_cfg, bert_net_cfg | from config import bert_train_cfg, bert_net_cfg | ||||
| import mindspore.dataset.engine.datasets as de | import mindspore.dataset.engine.datasets as de | ||||
| import mindspore._c_dataengine as deMap | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore import context | from mindspore import context | ||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.train.model import Model | from mindspore.train.model import Model | ||||
| @@ -52,7 +52,7 @@ def create_train_dataset(batch_size): | |||||
| ds = de.StorageDataset([bert_train_cfg.DATA_DIR], bert_train_cfg.SCHEMA_DIR, | ds = de.StorageDataset([bert_train_cfg.DATA_DIR], bert_train_cfg.SCHEMA_DIR, | ||||
| columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", | columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels", | ||||
| "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"]) | "masked_lm_positions", "masked_lm_ids", "masked_lm_weights"]) | ||||
| type_cast_op = deMap.TypeCastOp("int32") | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) | ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) | ||||
| ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) | ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) | ||||
| ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) | ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) | ||||
| @@ -24,8 +24,7 @@ import numpy as np | |||||
| import mindspore.ops.functional as F | import mindspore.ops.functional as F | ||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | ||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
| import mindspore.dataengine as de | |||||
| import mindspore._c_dataengine as deMap | |||||
| import mindspore.dataset as de | |||||
| import mindspore.dataset.transforms.c_transforms as C | import mindspore.dataset.transforms.c_transforms as C | ||||
| import mindspore.dataset.transforms.vision.c_transforms as vision | import mindspore.dataset.transforms.vision.c_transforms as vision | ||||
| from mindspore.communication.management import init | from mindspore.communication.management import init | ||||
| @@ -24,8 +24,7 @@ import numpy as np | |||||
| import mindspore.ops.functional as F | import mindspore.ops.functional as F | ||||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor | ||||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | from mindspore.train.serialization import load_checkpoint, load_param_into_net | ||||
| import mindspore.dataengine as de | |||||
| import mindspore._c_dataengine as deMap | |||||
| import mindspore.dataset as de | |||||
| import mindspore.dataset.transforms.c_transforms as C | import mindspore.dataset.transforms.c_transforms as C | ||||
| import mindspore.dataset.transforms.vision.c_transforms as vision | import mindspore.dataset.transforms.vision.c_transforms as vision | ||||
| from mindspore.communication.management import init | from mindspore.communication.management import init | ||||
| @@ -21,7 +21,7 @@ import numpy as np | |||||
| from numpy import allclose | from numpy import allclose | ||||
| import mindspore.common.dtype as mstype | import mindspore.common.dtype as mstype | ||||
| import mindspore.dataset.engine.datasets as de | import mindspore.dataset.engine.datasets as de | ||||
| import mindspore._c_dataengine as deMap | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore import context | from mindspore import context | ||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.train.model import Model | from mindspore.train.model import Model | ||||
| @@ -106,7 +106,7 @@ def me_de_train_dataset(): | |||||
| ds = de.StorageDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", | ds = de.StorageDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids", | ||||
| "next_sentence_labels", "masked_lm_positions", | "next_sentence_labels", "masked_lm_positions", | ||||
| "masked_lm_ids", "masked_lm_weights"]) | "masked_lm_ids", "masked_lm_weights"]) | ||||
| type_cast_op = deMap.TypeCastOp("int32") | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) | ds = ds.map(input_columns="masked_lm_ids", operations=type_cast_op) | ||||
| ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) | ds = ds.map(input_columns="masked_lm_positions", operations=type_cast_op) | ||||
| ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) | ds = ds.map(input_columns="next_sentence_labels", operations=type_cast_op) | ||||
| @@ -12,11 +12,11 @@ | |||||
| # See the License for the specific language governing permissions and | # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================ | # ============================================================================ | ||||
| import mindspore._c_dataengine as deMap | |||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| import mindspore.dataset.transforms.vision.c_transforms as vision | |||||
| from mindspore.dataset.transforms.vision import Inter | |||||
| import numpy as np | import numpy as np | ||||
| import sys | import sys | ||||
| from mindspore._c_dataengine import InterpolationMode | |||||
| import mindspore.context as context | import mindspore.context as context | ||||
| import mindspore.nn as nn | import mindspore.nn as nn | ||||
| @@ -32,7 +32,7 @@ SCHEMA_DIR = "{0}/resnet_all_datasetSchema.json".format(data_path) | |||||
| def test_me_de_train_dataset(): | def test_me_de_train_dataset(): | ||||
| data_list = ["{0}/train-00001-of-01024.data".format(data_path)] | data_list = ["{0}/train-00001-of-01024.data".format(data_path)] | ||||
| data_set = ds.StorageDataset(data_list, schema=SCHEMA_DIR, | data_set = ds.StorageDataset(data_list, schema=SCHEMA_DIR, | ||||
| columns_list=["image/encoded", "image/class/label"]) | |||||
| columns_list=["image/encoded", "image/class/label"]) | |||||
| resize_height = 224 | resize_height = 224 | ||||
| resize_width = 224 | resize_width = 224 | ||||
| @@ -41,19 +41,17 @@ def test_me_de_train_dataset(): | |||||
| # define map operations | # define map operations | ||||
| decode_op = deMap.DecodeOp() | |||||
| resize_op = deMap.ResizeOp(resize_height, resize_width, | |||||
| InterpolationMode.DE_INTER_LINEAR) # Bilinear as default | |||||
| rescale_op = deMap.RescaleOp(rescale, shift) | |||||
| changemode_op = deMap.ChangeModeOp() | |||||
| decode_op = vision.Decode() | |||||
| resize_op = vision.Resize(resize_height, resize_width, | |||||
| Inter.LINEAR) # Bilinear as default | |||||
| rescale_op = vision.Rescale(rescale, shift) | |||||
| # apply map operations on images | # apply map operations on images | ||||
| data_set = data_set.map(input_column_names="image/encoded", operation=decode_op) | |||||
| data_set = data_set.map(input_column_names="image/encoded", operation=resize_op) | |||||
| data_set = data_set.map(input_column_names="image/encoded", operation=rescale_op) | |||||
| data_set = data_set.map(input_column_names="image/encoded", operation=changemode_op) | |||||
| changeswap_op = deMap.ChannelSwapOp() | |||||
| data_set = data_set.map(input_column_names="image/encoded", operation=changeswap_op) | |||||
| data_set = data_set.map(input_columns="image/encoded", operations=decode_op) | |||||
| data_set = data_set.map(input_columns="image/encoded", operations=resize_op) | |||||
| data_set = data_set.map(input_columns="image/encoded", operations=rescale_op) | |||||
| hwc2chw_op = vision.HWC2CHW() | |||||
| data_set = data_set.map(input_columns="image/encoded", operations=hwc2chw_op) | |||||
| data_set = data_set.repeat(1) | data_set = data_set.repeat(1) | ||||
| # apply batch operations | # apply batch operations | ||||
| batch_size = 32 | batch_size = 32 | ||||
| @@ -24,7 +24,6 @@ import string | |||||
| import mindspore.dataset.transforms.vision.c_transforms as vision | import mindspore.dataset.transforms.vision.c_transforms as vision | ||||
| import numpy as np | import numpy as np | ||||
| import pytest | import pytest | ||||
| from mindspore._c_dataengine import InterpolationMode | |||||
| from mindspore.dataset.transforms.vision import Inter | from mindspore.dataset.transforms.vision import Inter | ||||
| from mindspore import log as logger | from mindspore import log as logger | ||||
| @@ -13,7 +13,8 @@ | |||||
| # limitations under the License. | # limitations under the License. | ||||
| # ============================================================================== | # ============================================================================== | ||||
| import mindspore.dataset.transforms.vision.c_transforms as vision | import mindspore.dataset.transforms.vision.c_transforms as vision | ||||
| import mindspore._c_dataengine as de_map | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore.common import dtype as mstype | |||||
| from util import ordered_save_and_check | from util import ordered_save_and_check | ||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| @@ -63,9 +64,8 @@ def test_case_project_map(): | |||||
| data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | ||||
| data1 = data1.project(columns=columns) | data1 = data1.project(columns=columns) | ||||
| no_op = de_map.NoOp() | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| type_cast_op = C.TypeCast(mstype.int64) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| filename = "project_map_after_result.npz" | filename = "project_map_after_result.npz" | ||||
| ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN) | ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN) | ||||
| @@ -77,8 +77,8 @@ def test_case_map_project(): | |||||
| data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | ||||
| no_op = de_map.NoOp() | |||||
| data1 = data1.map(input_columns=["col_sint64"], operations=no_op) | |||||
| type_cast_op = C.TypeCast(mstype.int64) | |||||
| data1 = data1.map(input_columns=["col_sint64"], operations=type_cast_op) | |||||
| data1 = data1.project(columns=columns) | data1 = data1.project(columns=columns) | ||||
| @@ -92,19 +92,19 @@ def test_case_project_between_maps(): | |||||
| data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | ||||
| no_op = de_map.NoOp() | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| type_cast_op = C.TypeCast(mstype.int64) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.project(columns=columns) | data1 = data1.project(columns=columns) | ||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| data1 = data1.map(input_columns=["col_3d"], operations=type_cast_op) | |||||
| filename = "project_between_maps_result.npz" | filename = "project_between_maps_result.npz" | ||||
| ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN) | ordered_save_and_check(data1, parameters, filename, generate_golden=GENERATE_GOLDEN) | ||||
| @@ -145,12 +145,12 @@ def test_case_map_project_map_project(): | |||||
| data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | data1 = ds.TFRecordDataset(DATA_DIR_TF, SCHEMA_DIR_TF, shuffle=False) | ||||
| no_op = de_map.NoOp() | |||||
| data1 = data1.map(input_columns=["col_sint64"], operations=no_op) | |||||
| type_cast_op = C.TypeCast(mstype.int64) | |||||
| data1 = data1.map(input_columns=["col_sint64"], operations=type_cast_op) | |||||
| data1 = data1.project(columns=columns) | data1 = data1.project(columns=columns) | ||||
| data1 = data1.map(input_columns=["col_2d"], operations=no_op) | |||||
| data1 = data1.map(input_columns=["col_2d"], operations=type_cast_op) | |||||
| data1 = data1.project(columns=columns) | data1 = data1.project(columns=columns) | ||||