diff --git a/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/LiteSession.java b/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/LiteSession.java index a2b672d834..692b97fb64 100644 --- a/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/LiteSession.java +++ b/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/LiteSession.java @@ -59,19 +59,19 @@ public class LiteSession { public List getInputs() { List ret = this.getInputs(this.sessionPtr); ArrayList tensors = new ArrayList(); - for (Long ms_tensor_addr : ret) { - MSTensor msTensor = new MSTensor(ms_tensor_addr); + for (Long msTensorAddr : ret) { + MSTensor msTensor = new MSTensor(msTensorAddr); tensors.add(msTensor); } return tensors; } public MSTensor getInputsByTensorName(String tensorName) { - Long tensor_addr = this.getInputsByTensorName(this.sessionPtr, tensorName); - if(tensor_addr == null){ + Long tensorAddr = this.getInputsByTensorName(this.sessionPtr, tensorName); + if (tensorAddr == null) { return null; } - MSTensor msTensor = new MSTensor(tensor_addr); + MSTensor msTensor = new MSTensor(tensorAddr); return msTensor; } @@ -102,11 +102,11 @@ public class LiteSession { } public MSTensor getOutputByTensorName(String tensorName) { - Long tensor_addr = getOutputByTensorName(this.sessionPtr, tensorName); - if(tensor_addr == null){ + Long tensorAddr = getOutputByTensorName(this.sessionPtr, tensorName); + if (tensorAddr == null) { return null; } - return new MSTensor(tensor_addr); + return new MSTensor(tensorAddr); } public void free() { @@ -115,11 +115,11 @@ public class LiteSession { } public boolean resize(List inputs, int[][] dims) { - long[] inputs_array = new long[inputs.size()]; + long[] inputsArray = new long[inputs.size()]; for (int i = 0; i < inputs.size(); i++) { - inputs_array[i] = inputs.get(i).getMSTensorPtr(); + inputsArray[i] = inputs.get(i).getMSTensorPtr(); } - return this.resize(this.sessionPtr, inputs_array, dims); + return this.resize(this.sessionPtr, inputsArray, dims); } private native long createSession(long msConfigPtr); diff --git a/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/config/MSConfig.java b/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/config/MSConfig.java index 0b2c9c0164..4ddc95df04 100644 --- a/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/config/MSConfig.java +++ b/mindspore/lite/java/java/app/src/main/java/com/mindspore/lite/config/MSConfig.java @@ -29,7 +29,7 @@ public class MSConfig { } public boolean init(int deviceType, int threadNum, int cpuBindMode) { - this.msConfigPtr = createMSConfig(deviceType, threadNum, cpuBindMode ,false); + this.msConfigPtr = createMSConfig(deviceType, threadNum, cpuBindMode, false); return this.msConfigPtr != 0; } diff --git a/mindspore/lite/src/runtime/kernel/npu/cast_npu.cc b/mindspore/lite/src/runtime/kernel/npu/cast_npu.cc index 3e9bff42ac..c39b4c2790 100644 --- a/mindspore/lite/src/runtime/kernel/npu/cast_npu.cc +++ b/mindspore/lite/src/runtime/kernel/npu/cast_npu.cc @@ -50,4 +50,5 @@ CastNPUKernel::~CastNPUKernel() { } REG_KERNEL(kNPU, kNumberTypeFloat32, PrimitiveType_Cast, NPUKernelCreator) +REG_KERNEL(kNPU, kNumberTypeInt32, PrimitiveType_Cast, NPUKernelCreator) } // namespace mindspore::kernel diff --git a/mindspore/lite/src/runtime/kernel/npu/gather_npu.cc b/mindspore/lite/src/runtime/kernel/npu/gather_npu.cc index 66440e08ee..0a1b8347bf 100644 --- a/mindspore/lite/src/runtime/kernel/npu/gather_npu.cc +++ b/mindspore/lite/src/runtime/kernel/npu/gather_npu.cc @@ -53,5 +53,6 @@ GatherNPUKernel::~GatherNPUKernel() { op_ = nullptr; } } +// NPU input index 0 datatype not support: 3(int32). REG_KERNEL(kNPU, kNumberTypeFloat32, PrimitiveType_Gather, NPUKernelCreator) } // namespace mindspore::kernel diff --git a/mindspore/lite/src/runtime/kernel/npu/shape_npu.cc b/mindspore/lite/src/runtime/kernel/npu/shape_npu.cc index 93c006acc6..0b718c5237 100644 --- a/mindspore/lite/src/runtime/kernel/npu/shape_npu.cc +++ b/mindspore/lite/src/runtime/kernel/npu/shape_npu.cc @@ -24,7 +24,7 @@ using mindspore::schema::PrimitiveType_Shape; namespace mindspore::kernel { int ShapeNPUKernel::IsSupport(const std::vector &inputs, const std::vector &outputs, OpParameter *opParameter) { - return RET_OK; + return RET_ERROR; } int ShapeNPUKernel::SetNPUInputs(const std::vector &inputs, const std::vector &outputs, diff --git a/mindspore/lite/src/runtime/kernel/npu/strided_slice_npu.cc b/mindspore/lite/src/runtime/kernel/npu/strided_slice_npu.cc index 747d33efea..0bfc52e83a 100644 --- a/mindspore/lite/src/runtime/kernel/npu/strided_slice_npu.cc +++ b/mindspore/lite/src/runtime/kernel/npu/strided_slice_npu.cc @@ -27,9 +27,9 @@ int StridedSliceNPUKernel::IsSupport(const std::vector &inputs, // Only onnx StridedSlice has 5 inputs, of which the 4th input is axes and the 5th input is strides. if (inputs.size() == 5) { vector axes; - size_t size = inputs[4]->shape()[0]; + size_t size = inputs[3]->shape()[0]; axes.resize(size); - memcpy(axes.data(), inputs[4]->data_c(), sizeof(int) * size); + memcpy(axes.data(), inputs[3]->data_c(), sizeof(int) * size); for (int i = 0; i < axes.size(); ++i) { if (i != axes[i]) { MS_LOG(ERROR) << "Does not support setting axis, so the axis must be continuous."; @@ -77,4 +77,5 @@ StridedSliceNPUKernel::~StridedSliceNPUKernel() { } REG_KERNEL(kNPU, kNumberTypeFloat32, PrimitiveType_StridedSlice, NPUKernelCreator) +REG_KERNEL(kNPU, kNumberTypeInt32, PrimitiveType_StridedSlice, NPUKernelCreator) } // namespace mindspore::kernel