Merge pull request !1312 from jiangjinsheng/vm_erfctags/v0.3.0-alpha
| @@ -361,6 +361,23 @@ def get_bprop_erf(self): | |||||
| return bprop | return bprop | ||||
| @bprop_getters.register(P.Erfc) | |||||
| def get_bprop_erfc(self): | |||||
| """Grad definition for `Erfc` operation.""" | |||||
| exp = P.Exp() | |||||
| square = P.Square() | |||||
| sqrt = P.Sqrt() | |||||
| cast = P.Cast() | |||||
| dtype = P.DType() | |||||
| def bprop(x, out, dout): | |||||
| half_root_pi = cast(2 / sqrt(F.scalar_to_tensor(np.pi)), dtype(x)) | |||||
| x_square = square(x) | |||||
| dx = dout * (-half_root_pi * exp(-x_square)) | |||||
| return (dx,) | |||||
| return bprop | |||||
| @bprop_getters.register(P.Pow) | @bprop_getters.register(P.Pow) | ||||
| def get_bprop_pow(self): | def get_bprop_pow(self): | ||||
| """Grad definition for `Pow` operation.""" | """Grad definition for `Pow` operation.""" | ||||
| @@ -152,6 +152,7 @@ from .fused_mul_add_n import _fused_mul_add_n_tbe | |||||
| from .fused_mul_apply_momentum import _fused_mul_apply_momentum_tbe | from .fused_mul_apply_momentum import _fused_mul_apply_momentum_tbe | ||||
| from .fill import _fill_op_tbe | from .fill import _fill_op_tbe | ||||
| from .erf import _erf_op_tbe | from .erf import _erf_op_tbe | ||||
| from .erfc import _erfc_op_tbe | |||||
| from .depthwise_conv2d import _depthwise_conv2d_tbe | from .depthwise_conv2d import _depthwise_conv2d_tbe | ||||
| from .depthwise_conv2d_backprop_filter import _depthwise_conv2d_backprop_filter_tbe | from .depthwise_conv2d_backprop_filter import _depthwise_conv2d_backprop_filter_tbe | ||||
| from .depthwise_conv2d_backprop_input import _depthwise_conv2d_backprop_input_tbe | from .depthwise_conv2d_backprop_input import _depthwise_conv2d_backprop_input_tbe | ||||
| @@ -0,0 +1,39 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """Erfc op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||||
| erfc_op_info = TBERegOp("Erfc") \ | |||||
| .fusion_type("ELEMWISE") \ | |||||
| .async_flag(False) \ | |||||
| .binfile_name("erfc.so") \ | |||||
| .compute_cost(10) \ | |||||
| .kernel_name("erfc") \ | |||||
| .partial_flag(True) \ | |||||
| .op_pattern("formatAgnostic") \ | |||||
| .input(0, "x", False, "required", "all") \ | |||||
| .output(0, "y", False, "required", "all") \ | |||||
| .dtype_format(DataType.F16_5HD, DataType.F16_5HD) \ | |||||
| .dtype_format(DataType.F16_Default, DataType.F16_Default) \ | |||||
| .dtype_format(DataType.F32_5HD, DataType.F32_5HD) \ | |||||
| .dtype_format(DataType.F32_Default, DataType.F32_Default) \ | |||||
| .get_op_info() | |||||
| @op_info_register(erfc_op_info) | |||||
| def _erfc_op_tbe(): | |||||
| """Erfc TBE register""" | |||||
| return | |||||
| @@ -39,7 +39,7 @@ from .control_ops import ControlDepend, GeSwitch, Merge | |||||
| from .inner_ops import ScalarCast | from .inner_ops import ScalarCast | ||||
| from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, | from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul, | ||||
| ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, | ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, | ||||
| Cos, Div, Equal, EqualCount, Exp, Erf, Floor, FloorDiv, FloorMod, Acosh, | |||||
| Cos, Div, Equal, EqualCount, Exp, Erf, Erfc, Floor, FloorDiv, FloorMod, Acosh, | |||||
| Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, | Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, | ||||
| LogicalNot, LogicalOr, MatMul, Maximum, | LogicalNot, LogicalOr, MatMul, Maximum, | ||||
| Minimum, Mul, Neg, NMSWithMask, NotEqual, | Minimum, Mul, Neg, NMSWithMask, NotEqual, | ||||
| @@ -144,7 +144,7 @@ class Merge(PrimitiveWithInfer): | |||||
| One and only one of the inputs should be selected as the output | One and only one of the inputs should be selected as the output | ||||
| Inputs: | Inputs: | ||||
| - **inputs** (Tuple) - The data to be merged. All tuple elements should have same shape. | |||||
| - **inputs** (Tuple) - The data to be merged. | |||||
| Outputs: | Outputs: | ||||
| tuple. Output is tuple(`data`, `output_index`). The `data` has the same shape of `inputs` element. | tuple. Output is tuple(`data`, `output_index`). The `data` has the same shape of `inputs` element. | ||||
| @@ -1073,6 +1073,36 @@ class Erf(PrimitiveWithInfer): | |||||
| return x_type | return x_type | ||||
| class Erfc(PrimitiveWithInfer): | |||||
| r""" | |||||
| Computes the complementary error function of `input_x` element-wise. | |||||
| Inputs: | |||||
| - **input_x** (Tensor) - The input tensor. | |||||
| Outputs: | |||||
| Tensor, has the same shape and dtype as the `input_x`. | |||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32) | |||||
| >>> erfc = P.Erfc() | |||||
| >>> erfc(input_x) | |||||
| [1.8427168, 0., 0.1572832, 0.00469124, 0.00002235] | |||||
| """ | |||||
| @prim_attr_register | |||||
| def __init__(self): | |||||
| """init Erfc""" | |||||
| self.init_prim_io_names(inputs=['x'], outputs=['y']) | |||||
| def infer_shape(self, x_shape): | |||||
| return x_shape | |||||
| def infer_dtype(self, x_type): | |||||
| validator.check_tensor_type_same({"x": x_type}, [mstype.float16, mstype.float32], self.name) | |||||
| return x_type | |||||
| class Minimum(_MathBinaryOp): | class Minimum(_MathBinaryOp): | ||||
| """ | """ | ||||
| Computes the element-wise minimum of input tensors. | Computes the element-wise minimum of input tensors. | ||||
| @@ -372,6 +372,15 @@ class Log1pNet(nn.Cell): | |||||
| return self.log1p(x) | return self.log1p(x) | ||||
| class ErfcNet(nn.Cell): | |||||
| def __init__(self): | |||||
| super(ErfcNet, self).__init__() | |||||
| self.erfc = P.Erfc() | |||||
| def construct(self, x): | |||||
| return self.erfc(x) | |||||
| test_case_math_ops = [ | test_case_math_ops = [ | ||||
| ('MatMulGrad', { | ('MatMulGrad', { | ||||
| 'block': GradWrap(NetWithLoss(MatMulNet())), | 'block': GradWrap(NetWithLoss(MatMulNet())), | ||||
| @@ -422,6 +431,11 @@ test_case_math_ops = [ | |||||
| 'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | 'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | ||||
| 'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | 'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | ||||
| 'skip': ['backward']}), | 'skip': ['backward']}), | ||||
| ('Erfc', { | |||||
| 'block': ErfcNet(), | |||||
| 'desc_inputs': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | |||||
| 'desc_bprop': [Tensor(np.array([[1.0, 2.0, 4.0]], np.float32))], | |||||
| }), | |||||
| ] | ] | ||||
| test_case_lists = [test_case_math_ops] | test_case_lists = [test_case_math_ops] | ||||