diff --git a/model_zoo/official/cv/googlenet/README.md b/model_zoo/official/cv/googlenet/README.md index 8c24152c3e..ea30aa742d 100644 --- a/model_zoo/official/cv/googlenet/README.md +++ b/model_zoo/official/cv/googlenet/README.md @@ -158,7 +158,7 @@ Parameters for both training and evaluation can be set in config.py ```python 'pre_trained': 'False' # whether training based on the pre-trained model - 'nump_classes': 10 # the number of classes in the dataset + 'num_classes': 10 # the number of classes in the dataset 'lr_init': 0.1 # initial learning rate 'batch_size': 128 # training batch size 'epoch_size': 125 # total training epochs @@ -175,6 +175,39 @@ Parameters for both training and evaluation can be set in config.py 'air_filename': 'googlenet.air' # file name of the air model used in export.py ``` +- config for GoogleNet, ImageNet dataset + + ```python + 'pre_trained': 'False' # whether training based on the pre-trained model + 'num_classes': 1000 # the number of classes in the dataset + 'lr_init': 0.1 # initial learning rate + 'batch_size': 256 # training batch size + 'epoch_size': 300 # total training epochs + 'momentum': 0.9 # momentum + 'weight_decay': 1e-4 # weight decay value + 'image_height': 224 # image height used as input to the model + 'image_width': 224 # image width used as input to the model + 'data_path': './ImageNet_Original/train/' # absolute full path to the train datasets + 'val_data_path': './ImageNet_Original/val/' # absolute full path to the evaluation datasets + 'device_target': 'Ascend' # device running the program + 'device_id': 0 # device ID used to train or evaluate the dataset. Ignore it when you use run_train.sh for distributed training + 'keep_checkpoint_max': 10 # only keep the last keep_checkpoint_max checkpoint + 'checkpoint_path': './train_googlenet_cifar10-125_390.ckpt' # the absolute full path to save the checkpoint file + 'onnx_filename': 'googlenet.onnx' # file name of the onnx model used in export.py + 'air_filename': 'googlenet.air' # file name of the air model used in export.py + 'lr_scheduler': 'exponential' # learning rate scheduler + 'lr_epochs': [70, 140, 210, 280] # epoch of lr changing + 'lr_gamma': 0.3 # decrease lr by a factor of exponential lr_scheduler + 'eta_min': 0.0 # eta_min in cosine_annealing scheduler + 'T_max': 150 # T-max in cosine_annealing scheduler + 'warmup_epochs': 0 # warmup epoch + 'is_dynamic_loss_scale': 0 # dynamic loss scale + 'loss_scale': 1024 # loss scale + 'label_smooth_factor': 0.1 # label_smooth_factor + 'use_label_smooth': True # label smooth + ``` + + For more configuration details, please refer the script `config.py`. ## [Training Process](#contents)