|
|
|
@@ -1,65 +1,65 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
|
|
from mindspore.nn import LayerNorm
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
from mindspore.nn import Cell
|
|
|
|
from mindspore.ops.composite import GradOperation
|
|
|
|
from mindspore import log as logger
|
|
|
|
from mindspore import context
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
|
|
|
|
class Grad(Cell):
|
|
|
|
def __init__(self, network):
|
|
|
|
super(Grad, self).__init__()
|
|
|
|
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True)
|
|
|
|
self.network = network
|
|
|
|
|
|
|
|
def construct(self, input, output_grad,):
|
|
|
|
gout = self.grad(self.network)(input, output_grad)
|
|
|
|
return gout
|
|
|
|
|
|
|
|
class Net(Cell):
|
|
|
|
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.layernorm = LayerNorm(input_shape, begin_norm_axis, begin_params_axis, gamma, beta)
|
|
|
|
|
|
|
|
def construct(self, input):
|
|
|
|
x = self.layernorm(input)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradients):
|
|
|
|
input_me = Tensor(input_data)
|
|
|
|
net_me = Grad(Net(normalized_shape, begin_norm_axis=axis,
|
|
|
|
begin_params_axis=axis,
|
|
|
|
gamma=Tensor(gamma),
|
|
|
|
beta=Tensor(beta)))
|
|
|
|
net_me.set_train()
|
|
|
|
out_pool_grad_me = Tensor(gradients)
|
|
|
|
out_grad = net_me(input_me, out_pool_grad_me)
|
|
|
|
logger.info("Check me result:")
|
|
|
|
logger.info(out_grad.asnumpy())
|
|
|
|
|
|
|
|
def test_normal_layernorm_grad_normalize_2d():
|
|
|
|
"""
|
|
|
|
1 input[1, 128, 1024],normalized_shape=[1024],element_affine=False
|
|
|
|
"""
|
|
|
|
input_data = np.ones([1, 128, 1024]).astype(np.float32)
|
|
|
|
gradients = np.ones((1, 128, 1024)).astype(np.float32)
|
|
|
|
gamma = np.random.randn(1024).astype(np.float32)
|
|
|
|
gamma.fill(1.1)
|
|
|
|
beta = np.random.randn(1024).astype(np.float32)
|
|
|
|
beta.fill(0.1)
|
|
|
|
py_me_layernorm_grad(input_data, (1024,), gamma, beta, 2, gradients)
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
from mindspore.nn import LayerNorm |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
from mindspore.nn import Cell |
|
|
|
from mindspore.ops.composite import GradOperation |
|
|
|
from mindspore import log as logger |
|
|
|
from mindspore import context |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
|
|
|
|
class Grad(Cell): |
|
|
|
def __init__(self, network): |
|
|
|
super(Grad, self).__init__() |
|
|
|
self.grad = GradOperation(name="get_all", get_all=True, sens_param=True) |
|
|
|
self.network = network |
|
|
|
|
|
|
|
def construct(self, input, output_grad,): |
|
|
|
gout = self.grad(self.network)(input, output_grad) |
|
|
|
return gout |
|
|
|
|
|
|
|
class Net(Cell): |
|
|
|
def __init__(self, input_shape, begin_norm_axis, begin_params_axis, gamma, beta): |
|
|
|
super(Net, self).__init__() |
|
|
|
self.layernorm = LayerNorm(input_shape, begin_norm_axis, begin_params_axis, gamma, beta) |
|
|
|
|
|
|
|
def construct(self, input): |
|
|
|
x = self.layernorm(input) |
|
|
|
return x |
|
|
|
|
|
|
|
def py_me_layernorm_grad(input_data, normalized_shape, gamma, beta, axis, gradients): |
|
|
|
input_me = Tensor(input_data) |
|
|
|
net_me = Grad(Net(normalized_shape, begin_norm_axis=axis, |
|
|
|
begin_params_axis=axis, |
|
|
|
gamma=Tensor(gamma), |
|
|
|
beta=Tensor(beta))) |
|
|
|
net_me.set_train() |
|
|
|
out_pool_grad_me = Tensor(gradients) |
|
|
|
out_grad = net_me(input_me, out_pool_grad_me) |
|
|
|
logger.info("Check me result:") |
|
|
|
logger.info(out_grad.asnumpy()) |
|
|
|
|
|
|
|
def test_normal_layernorm_grad_normalize_2d(): |
|
|
|
""" |
|
|
|
1 input[1, 128, 1024],normalized_shape=[1024],element_affine=False |
|
|
|
""" |
|
|
|
input_data = np.ones([1, 128, 1024]).astype(np.float32) |
|
|
|
gradients = np.ones((1, 128, 1024)).astype(np.float32) |
|
|
|
gamma = np.random.randn(1024).astype(np.float32) |
|
|
|
gamma.fill(1.1) |
|
|
|
beta = np.random.randn(1024).astype(np.float32) |
|
|
|
beta.fill(0.1) |
|
|
|
py_me_layernorm_grad(input_data, (1024,), gamma, beta, 2, gradients) |