From: @dinglinhe123 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghuipull/15416/MERGE
| @@ -564,7 +564,7 @@ std::string Execute::AippCfgGenerator() { | |||||
| std::vector<uint32_t> aipp_size = AippSizeFilter(resize_paras, crop_paras); | std::vector<uint32_t> aipp_size = AippSizeFilter(resize_paras, crop_paras); | ||||
| // Process normalization parameters to find out the final normalization parameters for Aipp module | |||||
| // Process Normalization parameters to find out the final Normalization parameters for Aipp module | |||||
| std::vector<uint32_t> normalize_paras; | std::vector<uint32_t> normalize_paras; | ||||
| if (info_->aipp_cfg_.find(vision::kDvppNormalizeOperation) != info_->aipp_cfg_.end()) { | if (info_->aipp_cfg_.find(vision::kDvppNormalizeOperation) != info_->aipp_cfg_.end()) { | ||||
| for (auto pos = info_->aipp_cfg_.equal_range(vision::kDvppNormalizeOperation); pos.first != pos.second; | for (auto pos = info_->aipp_cfg_.equal_range(vision::kDvppNormalizeOperation); pos.first != pos.second; | ||||
| @@ -39,7 +39,7 @@ NormalizeOp::NormalizeOp(float mean_r, float mean_g, float mean_b, float std_r, | |||||
| Status NormalizeOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | Status NormalizeOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | ||||
| IO_CHECK(input, output); | IO_CHECK(input, output); | ||||
| // Doing the normalization | |||||
| // Doing the Normalization | |||||
| return Normalize(input, output, mean_, std_); | return Normalize(input, output, mean_, std_); | ||||
| } | } | ||||
| @@ -37,7 +37,7 @@ NormalizePadOp::NormalizePadOp(float mean_r, float mean_g, float mean_b, float s | |||||
| Status NormalizePadOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | Status NormalizePadOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) { | ||||
| IO_CHECK(input, output); | IO_CHECK(input, output); | ||||
| // Doing the normalization + pad | |||||
| // Doing the Normalization + pad | |||||
| return NormalizePad(input, output, mean_, std_, dtype_); | return NormalizePad(input, output, mean_, std_, dtype_); | ||||
| } | } | ||||
| @@ -27,7 +27,7 @@ __all__ = ["LessBN"] | |||||
| class CommonHeadLastFN(Cell): | class CommonHeadLastFN(Cell): | ||||
| r""" | r""" | ||||
| The last full normalization layer. | |||||
| The last full Normalization layer. | |||||
| This layer implements the operation as: | This layer implements the operation as: | ||||
| @@ -538,12 +538,12 @@ class BatchNorm3d(Cell): | |||||
| class GlobalBatchNorm(_BatchNorm): | class GlobalBatchNorm(_BatchNorm): | ||||
| r""" | r""" | ||||
| Global normalization layer over a N-dimension input. | |||||
| Global Batch Normalization layer over a N-dimension input. | |||||
| Global Normalization is cross device synchronized Batch Normalization. The implementation of Batch Normalization | |||||
| only normalizes the data within each device. Global normalization will normalize the input within the group. | |||||
| It has been described in the paper `Batch Normalization: Accelerating Deep Network Training by | |||||
| Reducing Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the | |||||
| Global Batch Normalization is cross device synchronized Batch Normalization. The implementation of | |||||
| Batch Normalization only normalizes the data within each device. Global Normalization will normalize | |||||
| the input within the group.It has been described in the paper `Batch Normalization: Accelerating Deep Network | |||||
| Training by Reducing Internal Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the | |||||
| feature using a mini-batch of data and the learned parameters which can be described in the following formula. | feature using a mini-batch of data and the learned parameters which can be described in the following formula. | ||||
| .. math:: | .. math:: | ||||
| @@ -1003,9 +1003,9 @@ class GroupNorm(Cell): | |||||
| r""" | r""" | ||||
| Group Normalization over a mini-batch of inputs. | Group Normalization over a mini-batch of inputs. | ||||
| Group normalization is widely used in recurrent neural networks. It applies | |||||
| Group Normalization is widely used in recurrent neural networks. It applies | |||||
| normalization on a mini-batch of inputs for each single training case as described | normalization on a mini-batch of inputs for each single training case as described | ||||
| in the paper `Group Normalization <https://arxiv.org/pdf/1803.08494.pdf>`_. Group normalization | |||||
| in the paper `Group Normalization <https://arxiv.org/pdf/1803.08494.pdf>`_. Group Normalization | |||||
| divides the channels into groups and computes within each group the mean and variance for normalization, | divides the channels into groups and computes within each group the mean and variance for normalization, | ||||
| and it performs very stable over a wide range of batch size. It can be described using the following formula. | and it performs very stable over a wide range of batch size. It can be described using the following formula. | ||||
| @@ -32,7 +32,7 @@ class ConfusionMatrix(Metric): | |||||
| num_classes (int): Number of classes in the dataset. | num_classes (int): Number of classes in the dataset. | ||||
| normalize (str): The parameter of calculating ConfusionMatrix supports four Normalization modes, Choose from: | normalize (str): The parameter of calculating ConfusionMatrix supports four Normalization modes, Choose from: | ||||
| - **'no_norm'** (None) - No normalization is used. Default: None. | |||||
| - **'no_norm'** (None) - No Normalization is used. Default: None. | |||||
| - **'target'** (str) - Normalization based on target value. | - **'target'** (str) - Normalization based on target value. | ||||
| - **'prediction'** (str) - Normalization based on predicted value. | - **'prediction'** (str) - Normalization based on predicted value. | ||||
| - **'all'** (str) - Normalization over the whole matrix. | - **'all'** (str) - Normalization over the whole matrix. | ||||
| @@ -2300,9 +2300,9 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=N | |||||
| a variable, with observations in the columns. Otherwise, the relationship | a variable, with observations in the columns. Otherwise, the relationship | ||||
| is transposed: each column represents a variable, while the rows contain | is transposed: each column represents a variable, while the rows contain | ||||
| observations. | observations. | ||||
| bias (bool, optional): Default normalization (``False``) is by :math:`(N - 1)`, where | |||||
| bias (bool, optional): Default Normalization (``False``) is by :math:`(N - 1)`, where | |||||
| :math:`N` is the number of observations given (unbiased estimate). If bias is | :math:`N` is the number of observations given (unbiased estimate). If bias is | ||||
| ``True``, then normalization is by `N`. These values can be overridden by | |||||
| ``True``, then Normalization is by `N`. These values can be overridden by | |||||
| using the keyword `ddof`. | using the keyword `ddof`. | ||||
| ddof (int, optional): If not ``None``, the default value implied by `bias` is | ddof (int, optional): If not ``None``, the default value implied by `bias` is | ||||
| overridden. Note that :math:`ddof=1` will return the unbiased estimate, even | overridden. Note that :math:`ddof=1` will return the unbiased estimate, even | ||||
| @@ -2364,7 +2364,7 @@ def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None, aweights=N | |||||
| avg = average(m, axis=1, weights=w) | avg = average(m, axis=1, weights=w) | ||||
| # Determine the normalization | |||||
| # Determine the Normalization | |||||
| if w is None: | if w is None: | ||||
| fact = m.shape[1] - ddof | fact = m.shape[1] - ddof | ||||
| else: | else: | ||||
| @@ -1141,7 +1141,7 @@ class L2NormalizeGrad(PrimitiveWithInfer): | |||||
| class LayerNormGrad(Primitive): | class LayerNormGrad(Primitive): | ||||
| """ | """ | ||||
| Applies the layer normalization to the input array. | |||||
| Applies the layer Normalization to the input array. | |||||
| This operator will calculate the input gradients of layernorm. | This operator will calculate the input gradients of layernorm. | ||||
| @@ -816,7 +816,7 @@ class FusedBatchNormEx(PrimitiveWithCheck): | |||||
| class InstanceNorm(PrimitiveWithInfer): | class InstanceNorm(PrimitiveWithInfer): | ||||
| r""" | r""" | ||||
| Instance normalization over a 4D input. | |||||
| Instance Normalization over a 4D input. | |||||
| This operator applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with | This operator applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with | ||||
| additional channel dimension) as described in the paper `Instance Normalization: The Missing Ingredient for | additional channel dimension) as described in the paper `Instance Normalization: The Missing Ingredient for | ||||
| @@ -74,7 +74,7 @@ class CRF(nn.Cell): | |||||
| def log_sum_exp(self, logits): | def log_sum_exp(self, logits): | ||||
| ''' | ''' | ||||
| Compute the log_sum_exp score for normalization factor. | |||||
| Compute the log_sum_exp score for Normalization factor. | |||||
| ''' | ''' | ||||
| max_score = self.reduce_max(logits, -1) #16 5 5 | max_score = self.reduce_max(logits, -1) #16 5 5 | ||||
| score = self.log(self.reduce_sum(self.exp(logits - max_score), -1)) | score = self.log(self.reduce_sum(self.exp(logits - max_score), -1)) | ||||
| @@ -86,7 +86,7 @@ class ASRDataset(LoadAudioAndTranscript): | |||||
| audio_conf: Config containing the sample rate, window and the window length/stride in seconds | audio_conf: Config containing the sample rate, window and the window length/stride in seconds | ||||
| manifest_filepath (str): manifest_file path. | manifest_filepath (str): manifest_file path. | ||||
| labels (list): List containing all the possible characters to map to | labels (list): List containing all the possible characters to map to | ||||
| normalize: Apply standard mean and deviation normalization to audio tensor | |||||
| normalize: Apply standard mean and deviation Normalization to audio tensor | |||||
| batch_size (int): Dataset batch size (default=32) | batch_size (int): Dataset batch size (default=32) | ||||
| """ | """ | ||||
| def __init__(self, audio_conf=None, | def __init__(self, audio_conf=None, | ||||
| @@ -195,7 +195,7 @@ def create_dataset(audio_conf, manifest_filepath, labels, normalize, batch_size, | |||||
| audio_conf: Config containing the sample rate, window and the window length/stride in seconds | audio_conf: Config containing the sample rate, window and the window length/stride in seconds | ||||
| manifest_filepath (str): manifest_file path. | manifest_filepath (str): manifest_file path. | ||||
| labels (list): list containing all the possible characters to map to | labels (list): list containing all the possible characters to map to | ||||
| normalize: Apply standard mean and deviation normalization to audio tensor | |||||
| normalize: Apply standard mean and deviation Normalization to audio tensor | |||||
| train_mode (bool): Whether dataset is use for train or eval (default=True). | train_mode (bool): Whether dataset is use for train or eval (default=True). | ||||
| batch_size (int): Dataset batch size | batch_size (int): Dataset batch size | ||||
| rank (int): The shard ID within num_shards (default=None). | rank (int): The shard ID within num_shards (default=None). | ||||
| @@ -75,13 +75,13 @@ Dataset used: [The LJ Speech Dataset](<https://keithito.com/LJ-Speech-Dataset>) | |||||
| ├──egs // Note the egs folder should be downloaded from the above link | ├──egs // Note the egs folder should be downloaded from the above link | ||||
| ├──utils // Note the utils folder should be downloaded from the above link | ├──utils // Note the utils folder should be downloaded from the above link | ||||
| ├── audio.py // Audio utils. Note this script should be downloaded from the above link | ├── audio.py // Audio utils. Note this script should be downloaded from the above link | ||||
| ├── compute-meanvar-stats.py // Compute mean-variance normalization stats. Note this script should be downloaded from the above link | |||||
| ├── compute-meanvar-stats.py // Compute mean-variance Normalization stats. Note this script should be downloaded from the above link | |||||
| ├── evaluate.py // Evaluation | ├── evaluate.py // Evaluation | ||||
| ├── export.py // Convert mindspore model to air model | ├── export.py // Convert mindspore model to air model | ||||
| ├── hparams.py // Hyper-parameter configuration. Note this script should be downloaded from the above link | ├── hparams.py // Hyper-parameter configuration. Note this script should be downloaded from the above link | ||||
| ├── mksubset.py // Make subset of dataset. Note this script should be downloaded from the above link | ├── mksubset.py // Make subset of dataset. Note this script should be downloaded from the above link | ||||
| ├── preprocess.py // Preprocess dataset. Note this script should be downloaded from the above link | ├── preprocess.py // Preprocess dataset. Note this script should be downloaded from the above link | ||||
| ├── preprocess_normalize.py // Perform meanvar normalization to preprocessed features. Note this script should be downloaded from the above link | |||||
| ├── preprocess_normalize.py // Perform meanvar Normalization to preprocessed features. Note this script should be downloaded from the above link | |||||
| ├── README.md // Descriptions about WaveNet | ├── README.md // Descriptions about WaveNet | ||||
| ├── train.py // Training scripts | ├── train.py // Training scripts | ||||
| ├── train_pytorch.py // Note this script should be downloaded from the above link. The initial name of this script is train.py in the project from the link | ├── train_pytorch.py // Note this script should be downloaded from the above link. The initial name of this script is train.py in the project from the link | ||||
| @@ -30,7 +30,7 @@ class CRF(nn.Cell): | |||||
| Args: | Args: | ||||
| tag_to_index: The dict for tag to index mapping with extra "<START>" and "<STOP>"sign. | tag_to_index: The dict for tag to index mapping with extra "<START>" and "<STOP>"sign. | ||||
| batch_size: Batch size, i.e., the length of the first dimension. | batch_size: Batch size, i.e., the length of the first dimension. | ||||
| seq_length: Sequence length, i.e., the length of the second dimention. | |||||
| seq_length: Sequence length, i.e., the length of the second dimension. | |||||
| is_training: Specifies whether to use training mode. | is_training: Specifies whether to use training mode. | ||||
| Returns: | Returns: | ||||
| Training mode: Tensor, total loss. | Training mode: Tensor, total loss. | ||||
| @@ -74,7 +74,7 @@ class CRF(nn.Cell): | |||||
| def log_sum_exp(self, logits): | def log_sum_exp(self, logits): | ||||
| ''' | ''' | ||||
| Compute the log_sum_exp score for normalization factor. | |||||
| Compute the log_sum_exp score for Normalization factor. | |||||
| ''' | ''' | ||||
| max_score = self.reduce_max(logits, -1) #16 5 5 | max_score = self.reduce_max(logits, -1) #16 5 5 | ||||
| score = self.log(self.reduce_sum(self.exp(logits - max_score), -1)) | score = self.log(self.reduce_sum(self.exp(logits - max_score), -1)) | ||||
| @@ -31,7 +31,7 @@ GENERATE_GOLDEN = False | |||||
| def normalize_np(image, mean, std): | def normalize_np(image, mean, std): | ||||
| """ | """ | ||||
| Apply the normalization | |||||
| Apply the Normalization | |||||
| """ | """ | ||||
| # DE decodes the image in RGB by default, hence | # DE decodes the image in RGB by default, hence | ||||
| # the values here are in RGB | # the values here are in RGB | ||||