Browse Source

!3668 Modify collecting graph and dataset graph to step end stage

Merge pull request !3668 from ougongchang/fix_collect_dataset
tags/v0.7.0-beta
mindspore-ci-bot Gitee 5 years ago
parent
commit
b73ea6a7aa
1 changed files with 14 additions and 19 deletions
  1. +14
    -19
      mindspore/train/callback/_summary_collector.py

+ 14
- 19
mindspore/train/callback/_summary_collector.py View File

@@ -182,7 +182,7 @@ class SummaryCollector(Callback):
self._custom_lineage_data = custom_lineage_data

self._temp_optimizer = None
self._has_saved_train_network = False
self._has_saved_graph = False
self._has_saved_custom_data = False
self._is_parse_loss_success = True
self._first_step = True
@@ -287,32 +287,30 @@ class SummaryCollector(Callback):
'but got `{cb_params.mode}` mode.')

self._record.set_mode(cb_params.mode)
if cb_params.mode == ModeEnum.TRAIN.value:
# Note: if model.init is not executed then the computed graph will not be obtained here
# The purpose of recording the graph here was to collect_freq if it was set to a large size,
# but also want to see the graph as soon after compilation.
self._collect_graphs(cb_params)

self._collect_dataset_graph(cb_params)
if cb_params.mode == ModeEnum.TRAIN.value:
if self._collect_tensor_freq is None:
default_tensor_summary_limit = 20
total_step = cb_params.epoch_num * cb_params.batch_num
self._collect_tensor_freq = max(self._collect_freq, total_step // default_tensor_summary_limit)

if self._custom_lineage_data and not self._has_saved_custom_data:
packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data)
self._record.add_value('custom_lineage_data', 'custom_lineage_data', packaged_custom_data)
self._has_saved_custom_data = True

# There's nothing special about setting step to 0 here, just to satisfy the interface call
self._record.record(step=0)

def step_end(self, run_context):
cb_params = run_context.original_args()
if cb_params.mode != ModeEnum.TRAIN.value:
return
if not self._has_saved_train_network:

if not self._has_saved_graph:
self._collect_graphs(cb_params)
self._collect_dataset_graph(cb_params)
self._has_saved_graph = True
self._record.record(cb_params.cur_step_num)

if self._custom_lineage_data and not self._has_saved_custom_data:
packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data)
self._record.add_value('custom_lineage_data', 'custom_lineage_data', packaged_custom_data)
self._has_saved_custom_data = True
self._record.record(cb_params.cur_step_num)

if self._first_step:
# Notice: This way of determining whether dataset sink mode is True does not work in the eval scenario
self._dataset_sink_mode = cb_params.cur_step_num == cb_params.batch_num
@@ -327,14 +325,12 @@ class SummaryCollector(Callback):
elif current % self._collect_freq == 0:
self._collect_at_step_end(cb_params, lambda plugin: plugin != PluginEnum.TENSOR.value)


def _collect_at_step_end(self, cb_params, plugin_filter):
self._collect_input_data(cb_params)
self._collect_metric(cb_params)
self._collect_histogram(cb_params)
self._record.record(cb_params.cur_step_num, plugin_filter=plugin_filter)


def end(self, run_context):
cb_params = run_context.original_args()
if cb_params.mode == ModeEnum.TRAIN.value:
@@ -428,7 +424,6 @@ class SummaryCollector(Callback):
if graph_proto is None:
return

self._has_saved_train_network = True
self._record.add_value(PluginEnum.GRAPH.value, 'train_network/auto', graph_proto)

def _collect_metric(self, cb_params):


Loading…
Cancel
Save