|
|
|
@@ -182,7 +182,7 @@ class SummaryCollector(Callback): |
|
|
|
self._custom_lineage_data = custom_lineage_data |
|
|
|
|
|
|
|
self._temp_optimizer = None |
|
|
|
self._has_saved_train_network = False |
|
|
|
self._has_saved_graph = False |
|
|
|
self._has_saved_custom_data = False |
|
|
|
self._is_parse_loss_success = True |
|
|
|
self._first_step = True |
|
|
|
@@ -287,32 +287,30 @@ class SummaryCollector(Callback): |
|
|
|
'but got `{cb_params.mode}` mode.') |
|
|
|
|
|
|
|
self._record.set_mode(cb_params.mode) |
|
|
|
if cb_params.mode == ModeEnum.TRAIN.value: |
|
|
|
# Note: if model.init is not executed then the computed graph will not be obtained here |
|
|
|
# The purpose of recording the graph here was to collect_freq if it was set to a large size, |
|
|
|
# but also want to see the graph as soon after compilation. |
|
|
|
self._collect_graphs(cb_params) |
|
|
|
|
|
|
|
self._collect_dataset_graph(cb_params) |
|
|
|
if cb_params.mode == ModeEnum.TRAIN.value: |
|
|
|
if self._collect_tensor_freq is None: |
|
|
|
default_tensor_summary_limit = 20 |
|
|
|
total_step = cb_params.epoch_num * cb_params.batch_num |
|
|
|
self._collect_tensor_freq = max(self._collect_freq, total_step // default_tensor_summary_limit) |
|
|
|
|
|
|
|
if self._custom_lineage_data and not self._has_saved_custom_data: |
|
|
|
packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data) |
|
|
|
self._record.add_value('custom_lineage_data', 'custom_lineage_data', packaged_custom_data) |
|
|
|
self._has_saved_custom_data = True |
|
|
|
|
|
|
|
# There's nothing special about setting step to 0 here, just to satisfy the interface call |
|
|
|
self._record.record(step=0) |
|
|
|
|
|
|
|
def step_end(self, run_context): |
|
|
|
cb_params = run_context.original_args() |
|
|
|
if cb_params.mode != ModeEnum.TRAIN.value: |
|
|
|
return |
|
|
|
if not self._has_saved_train_network: |
|
|
|
|
|
|
|
if not self._has_saved_graph: |
|
|
|
self._collect_graphs(cb_params) |
|
|
|
self._collect_dataset_graph(cb_params) |
|
|
|
self._has_saved_graph = True |
|
|
|
self._record.record(cb_params.cur_step_num) |
|
|
|
|
|
|
|
if self._custom_lineage_data and not self._has_saved_custom_data: |
|
|
|
packaged_custom_data = self._package_custom_lineage_data(self._custom_lineage_data) |
|
|
|
self._record.add_value('custom_lineage_data', 'custom_lineage_data', packaged_custom_data) |
|
|
|
self._has_saved_custom_data = True |
|
|
|
self._record.record(cb_params.cur_step_num) |
|
|
|
|
|
|
|
if self._first_step: |
|
|
|
# Notice: This way of determining whether dataset sink mode is True does not work in the eval scenario |
|
|
|
self._dataset_sink_mode = cb_params.cur_step_num == cb_params.batch_num |
|
|
|
@@ -327,14 +325,12 @@ class SummaryCollector(Callback): |
|
|
|
elif current % self._collect_freq == 0: |
|
|
|
self._collect_at_step_end(cb_params, lambda plugin: plugin != PluginEnum.TENSOR.value) |
|
|
|
|
|
|
|
|
|
|
|
def _collect_at_step_end(self, cb_params, plugin_filter): |
|
|
|
self._collect_input_data(cb_params) |
|
|
|
self._collect_metric(cb_params) |
|
|
|
self._collect_histogram(cb_params) |
|
|
|
self._record.record(cb_params.cur_step_num, plugin_filter=plugin_filter) |
|
|
|
|
|
|
|
|
|
|
|
def end(self, run_context): |
|
|
|
cb_params = run_context.original_args() |
|
|
|
if cb_params.mode == ModeEnum.TRAIN.value: |
|
|
|
@@ -428,7 +424,6 @@ class SummaryCollector(Callback): |
|
|
|
if graph_proto is None: |
|
|
|
return |
|
|
|
|
|
|
|
self._has_saved_train_network = True |
|
|
|
self._record.add_value(PluginEnum.GRAPH.value, 'train_network/auto', graph_proto) |
|
|
|
|
|
|
|
def _collect_metric(self, cb_params): |
|
|
|
|