|
|
|
@@ -56,7 +56,7 @@ def create_quant_config(quant_observer=(nn.FakeQuantWithMinMaxObserver, nn.FakeQ |
|
|
|
Default: (QuantDtype.INT8, QuantDtype.INT8) |
|
|
|
per_channel (Union[bool, list, tuple]): Quantization granularity based on layer or on channel. If `True` |
|
|
|
then base on per channel otherwise base on per layer. The first element represents weights |
|
|
|
and second element represents data flow. Default: (False, False) |
|
|
|
and second element represents data flow, and second element must be `False` now. Default: (False, False) |
|
|
|
symmetric (Union[bool, list, tuple]): Whether the quantization algorithm is symmetric or not. If `True` then |
|
|
|
base on symmetric otherwise base on asymmetric. The first element represents weights and second |
|
|
|
element represents data flow. Default: (False, False) |
|
|
|
@@ -66,6 +66,8 @@ def create_quant_config(quant_observer=(nn.FakeQuantWithMinMaxObserver, nn.FakeQ |
|
|
|
Returns: |
|
|
|
QuantConfig, Contains the observer type of weight and activation. |
|
|
|
""" |
|
|
|
if per_channel[-1]: |
|
|
|
raise ValueError("Arg 'per_channel' second element must be 'False'.") |
|
|
|
weight_observer = quant_observer[0].partial_init(quant_delay=quant_delay[0], quant_dtype=quant_dtype[0], |
|
|
|
per_channel=per_channel[0], symmetric=symmetric[0], |
|
|
|
narrow_range=narrow_range[0]) |
|
|
|
@@ -130,7 +132,7 @@ class QuantizationAwareTraining(Quantizer): |
|
|
|
Default: (QuantDtype.INT8, QuantDtype.INT8) |
|
|
|
per_channel (Union[bool, list, tuple]): Quantization granularity based on layer or on channel. If `True` |
|
|
|
then base on per channel otherwise base on per layer. The first element represents weights |
|
|
|
and second element represents data flow. Default: (False, False) |
|
|
|
and second element represents data flow, and second element must be `False` now. Default: (False, False) |
|
|
|
symmetric (Union[bool, list, tuple]): Whether the quantization algorithm is symmetric or not. If `True` then |
|
|
|
base on symmetric otherwise base on asymmetric. The first element represents weights and second |
|
|
|
element represents data flow. Default: (False, False) |
|
|
|
|