From: @zhao_ting_v Reviewed-by: @wuxuejian,@oacjiewen Signed-off-by: @wuxuejiantags/v1.2.0-rc1
| @@ -84,7 +84,7 @@ other datasets need to use the same format as WiderFace. | |||||
| - Hardware(Ascend) | - Hardware(Ascend) | ||||
| - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | ||||
| - Framework | - Framework | ||||
| - [MindSpore](https://cmc-szv.clouddragon.huawei.com/cmcversion/index/search?searchKey=Do-MindSpore%20V100R001C00B622) | |||||
| - [MindSpore](https://www.mindspore.cn/install/en) | |||||
| - For more information, please check the resources below: | - For more information, please check the resources below: | ||||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) | - [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) | ||||
| - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) | - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) | ||||
| @@ -187,7 +187,7 @@ class 1 precision is 88.01%, recall is 82.77% | |||||
| | Loss Function | SoftmaxCrossEntropyWithLogits for classification, SmoothL2Loss for bbox regression| | | Loss Function | SoftmaxCrossEntropyWithLogits for classification, SmoothL2Loss for bbox regression| | ||||
| | Loss | ~0.008 | | | Loss | ~0.008 | | ||||
| | Total time (8p) | 4h | | | Total time (8p) | 4h | | ||||
| | Scripts | [deeptext script](https://gitee.com/mindspore/mindspore/tree/r1.1/mindspore/official/cv/deeptext) | | |||||
| | Scripts | [deeptext script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/deeptext) | | |||||
| #### Inference Performance | #### Inference Performance | ||||
| @@ -197,7 +197,7 @@ Calculated!{"precision": 0.814796668299853, "recall": 0.8006740491092923, "hmean | |||||
| | Total time | 1pc: 75.48 h; 8pcs: 10.01 h | | | Total time | 1pc: 75.48 h; 8pcs: 10.01 h | | ||||
| | Parameters (M) | 27.36 | | | Parameters (M) | 27.36 | | ||||
| | Checkpoint for Fine tuning | 109.44M (.ckpt file) | | | Checkpoint for Fine tuning | 109.44M (.ckpt file) | | ||||
| | Scripts | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/psenet> | | |||||
| | Scripts | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/psenet> | | |||||
| ### Inference Performance | ### Inference Performance | ||||
| @@ -195,7 +195,7 @@ Calculated!{"precision": 0.8147966668299853,"recall":0.8006740491092923,"h | |||||
| | 总时间 | 1卡:75.48小时;4卡:18.87小时| | | 总时间 | 1卡:75.48小时;4卡:18.87小时| | ||||
| | 参数(M) | 27.36 | | | 参数(M) | 27.36 | | ||||
| | 微调检查点 | 109.44M (.ckpt file) | | | 微调检查点 | 109.44M (.ckpt file) | | ||||
| | 脚本 | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/psenet> | | |||||
| | 脚本 | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/psenet> | | |||||
| ### 推理性能 | ### 推理性能 | ||||
| @@ -1,4 +1,4 @@ | |||||
|  | |||||
|  | |||||
| <!-- TOC --> | <!-- TOC --> | ||||
| @@ -1,4 +1,4 @@ | |||||
|  | |||||
|  | |||||
| <!-- TOC --> | <!-- TOC --> | ||||
| @@ -47,7 +47,7 @@ BERT(Devlin等人,2018年)采用有屏蔽的语料丰富文本预训练Tra | |||||
| 受BERT、GPT及其他语言模型的启发,微软致力于在此基础上研究[掩式序列到序列(MASS)预训练语言生成](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf)。MASS的参数k很重要,用来控制屏蔽后的分片长度。BERT和GPT属于特例,k等于1或者句长。 | 受BERT、GPT及其他语言模型的启发,微软致力于在此基础上研究[掩式序列到序列(MASS)预训练语言生成](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf)。MASS的参数k很重要,用来控制屏蔽后的分片长度。BERT和GPT属于特例,k等于1或者句长。 | ||||
| [MASS介绍 — 序列对序列语言生成任务中性能优于BERT和GPT的预训练方法](https://www.microsoft.com/en-us/research/blog/introduction-mass-a-pre-training-method-thing-forts-bert-and-gpt-in-sequence-to-sequence-language-generate-tasks/) | |||||
| [MASS介绍 — 序列对序列语言生成任务中性能优于BERT和GPT的预训练方法](https://www.microsoft.com/en-us/research/blog/introducing-mass-a-pre-training-method-that-outperforms-bert-and-gpt-in-sequence-to-sequence-language-generation-tasks/) | |||||
| [论文](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf): Song, Kaitao, Xu Tan, Tao Qin, Jianfeng Lu and Tie-Yan Liu.“MASS: Masked Sequence to Sequence Pre-training for Language Generation.”ICML (2019). | [论文](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf): Song, Kaitao, Xu Tan, Tao Qin, Jianfeng Lu and Tie-Yan Liu.“MASS: Masked Sequence to Sequence Pre-training for Language Generation.”ICML (2019). | ||||
| @@ -655,4 +655,4 @@ The model has been validated on Ascend environment, not validated on CPU and GPU | |||||
| # ModelZoo Homepage | # ModelZoo Homepage | ||||
| [Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo) | |||||
| [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo) | |||||
| @@ -192,7 +192,7 @@ Parameters for both training and evaluation can be set in config.py | |||||
| | Speed | 1pc: 160 samples/sec; | | | Speed | 1pc: 160 samples/sec; | | ||||
| | Total time | 1pc: 20 mins; | | | Total time | 1pc: 20 mins; | | ||||
| | Checkpoint for Fine tuning | 198.73M(.ckpt file) | | | Checkpoint for Fine tuning | 198.73M(.ckpt file) | | ||||
| | Scripts | [music_auto_tagging script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/audio/fcn-4) | | |||||
| | Scripts | [music_auto_tagging script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/audio/fcn-4) | | |||||
| ## [ModelZoo Homepage](#contents) | ## [ModelZoo Homepage](#contents) | ||||
| @@ -79,7 +79,7 @@ Dataset used: [COCO2017](https://cocodataset.org/) | |||||
| - Hardware(Ascend) | - Hardware(Ascend) | ||||
| - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. | ||||
| - Framework | - Framework | ||||
| - [MindSpore](https://cmc-szv.clouddragon.huawei.com/cmcversion/index/search?searchKey=Do-MindSpore%20V100R001C00B622) | |||||
| - [MindSpore](https://www.mindspore.cn/install/en) | |||||
| - For more information, please check the resources below: | - For more information, please check the resources below: | ||||
| - [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) | - [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) | ||||
| - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) | - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) | ||||