Browse Source

!11303 fix links in model zoo

From: @zhao_ting_v
Reviewed-by: @wuxuejian,@oacjiewen
Signed-off-by: @wuxuejian
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 4 years ago
parent
commit
b3ecba94c2
10 changed files with 10 additions and 10 deletions
  1. +1
    -1
      model_zoo/official/cv/centerface/README.md
  2. +1
    -1
      model_zoo/official/cv/deeptext/README.md
  3. +1
    -1
      model_zoo/official/cv/psenet/README.md
  4. +1
    -1
      model_zoo/official/cv/psenet/README_CN.md
  5. +1
    -1
      model_zoo/official/nlp/fasttext/README.md
  6. +1
    -1
      model_zoo/official/nlp/gnmt_v2/README.md
  7. +1
    -1
      model_zoo/official/nlp/mass/README_CN.md
  8. +1
    -1
      model_zoo/official/nlp/prophetnet/README.md
  9. +1
    -1
      model_zoo/research/audio/fcn-4/README.md
  10. +1
    -1
      model_zoo/research/cv/centernet/README.md

+ 1
- 1
model_zoo/official/cv/centerface/README.md View File

@@ -84,7 +84,7 @@ other datasets need to use the same format as WiderFace.
- Hardware(Ascend) - Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework - Framework
- [MindSpore](https://cmc-szv.clouddragon.huawei.com/cmcversion/index/search?searchKey=Do-MindSpore%20V100R001C00B622)
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below: - For more information, please check the resources below:
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) - [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)


+ 1
- 1
model_zoo/official/cv/deeptext/README.md View File

@@ -187,7 +187,7 @@ class 1 precision is 88.01%, recall is 82.77%
| Loss Function | SoftmaxCrossEntropyWithLogits for classification, SmoothL2Loss for bbox regression| | Loss Function | SoftmaxCrossEntropyWithLogits for classification, SmoothL2Loss for bbox regression|
| Loss | ~0.008 | | Loss | ~0.008 |
| Total time (8p) | 4h | | Total time (8p) | 4h |
| Scripts | [deeptext script](https://gitee.com/mindspore/mindspore/tree/r1.1/mindspore/official/cv/deeptext) |
| Scripts | [deeptext script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/deeptext) |


#### Inference Performance #### Inference Performance




+ 1
- 1
model_zoo/official/cv/psenet/README.md View File

@@ -197,7 +197,7 @@ Calculated!{"precision": 0.814796668299853, "recall": 0.8006740491092923, "hmean
| Total time | 1pc: 75.48 h; 8pcs: 10.01 h | | Total time | 1pc: 75.48 h; 8pcs: 10.01 h |
| Parameters (M) | 27.36 | | Parameters (M) | 27.36 |
| Checkpoint for Fine tuning | 109.44M (.ckpt file) | | Checkpoint for Fine tuning | 109.44M (.ckpt file) |
| Scripts | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/psenet> |
| Scripts | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/psenet> |
### Inference Performance ### Inference Performance


+ 1
- 1
model_zoo/official/cv/psenet/README_CN.md View File

@@ -195,7 +195,7 @@ Calculated!{"precision": 0.8147966668299853,"recall":0.8006740491092923,"h
| 总时间 | 1卡:75.48小时;4卡:18.87小时| | 总时间 | 1卡:75.48小时;4卡:18.87小时|
| 参数(M) | 27.36 | | 参数(M) | 27.36 |
| 微调检查点 | 109.44M (.ckpt file) | | 微调检查点 | 109.44M (.ckpt file) |
| 脚本 | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/psenet> |
| 脚本 | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/psenet> |


### 推理性能 ### 推理性能




+ 1
- 1
model_zoo/official/nlp/fasttext/README.md View File

@@ -1,4 +1,4 @@
![](https://www.mindspore.cn/static/img/logo.a3e472c9.png)
![](https://www.mindspore.cn/static/img/logo_black.6a5c850d.png)


<!-- TOC --> <!-- TOC -->




+ 1
- 1
model_zoo/official/nlp/gnmt_v2/README.md View File

@@ -1,4 +1,4 @@
![](https://www.mindspore.cn/static/img/logo.a3e472c9.png)
![](https://www.mindspore.cn/static/img/logo_black.6a5c850d.png)


<!-- TOC --> <!-- TOC -->




+ 1
- 1
model_zoo/official/nlp/mass/README_CN.md View File

@@ -47,7 +47,7 @@ BERT(Devlin等人,2018年)采用有屏蔽的语料丰富文本预训练Tra


受BERT、GPT及其他语言模型的启发,微软致力于在此基础上研究[掩式序列到序列(MASS)预训练语言生成](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf)。MASS的参数k很重要,用来控制屏蔽后的分片长度。BERT和GPT属于特例,k等于1或者句长。 受BERT、GPT及其他语言模型的启发,微软致力于在此基础上研究[掩式序列到序列(MASS)预训练语言生成](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf)。MASS的参数k很重要,用来控制屏蔽后的分片长度。BERT和GPT属于特例,k等于1或者句长。


[MASS介绍 — 序列对序列语言生成任务中性能优于BERT和GPT的预训练方法](https://www.microsoft.com/en-us/research/blog/introduction-mass-a-pre-training-method-thing-forts-bert-and-gpt-in-sequence-to-sequence-language-generate-tasks/)
[MASS介绍 — 序列对序列语言生成任务中性能优于BERT和GPT的预训练方法](https://www.microsoft.com/en-us/research/blog/introducing-mass-a-pre-training-method-that-outperforms-bert-and-gpt-in-sequence-to-sequence-language-generation-tasks/)


[论文](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf): Song, Kaitao, Xu Tan, Tao Qin, Jianfeng Lu and Tie-Yan Liu.“MASS: Masked Sequence to Sequence Pre-training for Language Generation.”ICML (2019). [论文](https://www.microsoft.com/en-us/research/uploads/prod/2019/06/MASS-paper-updated-002.pdf): Song, Kaitao, Xu Tan, Tao Qin, Jianfeng Lu and Tie-Yan Liu.“MASS: Masked Sequence to Sequence Pre-training for Language Generation.”ICML (2019).




+ 1
- 1
model_zoo/official/nlp/prophetnet/README.md View File

@@ -655,4 +655,4 @@ The model has been validated on Ascend environment, not validated on CPU and GPU


# ModelZoo Homepage # ModelZoo Homepage


[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
[Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)

+ 1
- 1
model_zoo/research/audio/fcn-4/README.md View File

@@ -192,7 +192,7 @@ Parameters for both training and evaluation can be set in config.py
| Speed | 1pc: 160 samples/sec; | | Speed | 1pc: 160 samples/sec; |
| Total time | 1pc: 20 mins; | | Total time | 1pc: 20 mins; |
| Checkpoint for Fine tuning | 198.73M(.ckpt file) | | Checkpoint for Fine tuning | 198.73M(.ckpt file) |
| Scripts | [music_auto_tagging script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/audio/fcn-4) |
| Scripts | [music_auto_tagging script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/audio/fcn-4) |
## [ModelZoo Homepage](#contents) ## [ModelZoo Homepage](#contents)


+ 1
- 1
model_zoo/research/cv/centernet/README.md View File

@@ -79,7 +79,7 @@ Dataset used: [COCO2017](https://cocodataset.org/)
- Hardware(Ascend) - Hardware(Ascend)
- Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources. - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework - Framework
- [MindSpore](https://cmc-szv.clouddragon.huawei.com/cmcversion/index/search?searchKey=Do-MindSpore%20V100R001C00B622)
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below: - For more information, please check the resources below:
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html) - [MindSpore tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html) - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)


Loading…
Cancel
Save