|
|
|
@@ -481,6 +481,19 @@ class Conv2dTranspose(_Conv): |
|
|
|
|
|
|
|
Input is typically of shape :math:`(N, C, H, W)`, where :math:`N` is batch size and :math:`C` is channel number. |
|
|
|
|
|
|
|
If the 'pad_mode' is set to be "pad", the height and width of output are defined as: |
|
|
|
|
|
|
|
.. math:: |
|
|
|
|
|
|
|
H_{out} = (H_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times |
|
|
|
(\text{ks_h} - 1) + 1 |
|
|
|
|
|
|
|
W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times |
|
|
|
(\text{ks_w} - 1) + 1 |
|
|
|
|
|
|
|
where :math:`\text{ks_h}` is the height of the convolution kernel and :math:`\text{ks_w}` is the width |
|
|
|
of the convolution kernel. |
|
|
|
|
|
|
|
Args: |
|
|
|
in_channels (int): The number of channels in the input space. |
|
|
|
out_channels (int): The number of channels in the output space. |
|
|
|
@@ -529,9 +542,10 @@ class Conv2dTranspose(_Conv): |
|
|
|
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal') |
|
|
|
>>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') |
|
|
|
>>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32) |
|
|
|
>>> net(input) |
|
|
|
>>> net(input).shape |
|
|
|
(1, 64, 19, 53) |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
@@ -654,6 +668,15 @@ class Conv1dTranspose(_Conv): |
|
|
|
|
|
|
|
Input is typically of shape :math:`(N, C, W)`, where :math:`N` is batch size and :math:`C` is channel number. |
|
|
|
|
|
|
|
If the 'pad_mode' is set to be "pad", the width of output is defined as: |
|
|
|
|
|
|
|
.. math:: |
|
|
|
|
|
|
|
W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times |
|
|
|
(\text{ks_w} - 1) + 1 |
|
|
|
|
|
|
|
where :math:`\text{ks_w}` is the width of the convolution kernel. |
|
|
|
|
|
|
|
Args: |
|
|
|
in_channels (int): The number of channels in the input space. |
|
|
|
out_channels (int): The number of channels in the output space. |
|
|
|
@@ -694,9 +717,10 @@ class Conv1dTranspose(_Conv): |
|
|
|
Tensor of shape :math:`(N, C_{out}, W_{out})`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal') |
|
|
|
>>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') |
|
|
|
>>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32) |
|
|
|
>>> net(input) |
|
|
|
>>> net(input).shape |
|
|
|
(1, 64, 53) |
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, |
|
|
|
|