Merge pull request !221 from chentingting/support_distributd_GatherV2_operatortags/v0.2.0-alpha
| @@ -623,5 +623,34 @@ double DropOutCost::GetForwardComputationCost(const std::vector<TensorInfo>& inp | |||
| Shape input0_slice_shape = input0.slice_shape(); | |||
| return ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]) * DROPOUT_COST_RATE; | |||
| } | |||
| // return the per device communication cost in the forward phase. | |||
| double GatherV2Cost::GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, | |||
| const int32_t&) const { | |||
| // GatherV2Cost does not need communication in the forward phase | |||
| return 0.0; | |||
| } | |||
| // return the per device communication cost in the backward phase. | |||
| double GatherV2Cost::GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, | |||
| const int32_t&) const { | |||
| // GatherV2Cost does not need communication in the backward phase | |||
| return 0.0; | |||
| } | |||
| double GatherV2Cost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&, | |||
| const int32_t&) const { | |||
| // In forward phase, the computation cost = slice(A) + slice(B) | |||
| Shape input0_slice_shape = inputs[0].slice_shape(); | |||
| Shape input1_slice_shape = inputs[1].slice_shape(); | |||
| double result = ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]) + | |||
| ListProduct(input1_slice_shape) * static_cast<double>(inputs_type_lengths_[1]); | |||
| return result; | |||
| } | |||
| double GatherV2Cost::GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&, | |||
| const int32_t&) const { | |||
| return 0.0; | |||
| } | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -81,6 +81,8 @@ class OperatorCost { | |||
| std::vector<size_t> outputs_type_lengths_; | |||
| }; | |||
| using OperatorCostPtr = std::shared_ptr<OperatorCost>; | |||
| class MatMulCost : public OperatorCost { | |||
| public: | |||
| MatMulCost() = default; | |||
| @@ -525,6 +527,31 @@ class DropOutCost : public OperatorCost { | |||
| }; | |||
| using DropOutCostPtr = std::shared_ptr<DropOutCost>; | |||
| class GatherV2Cost : public OperatorCost { | |||
| public: | |||
| GatherV2Cost() = default; | |||
| ~GatherV2Cost() override = default; | |||
| double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs, | |||
| const int32_t& stage_id) const override { | |||
| return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id); | |||
| } | |||
| double GetForwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs, | |||
| const int32_t& stage_id) const override; | |||
| double GetBackwardCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs, | |||
| const int32_t& stage_id) const override; | |||
| double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs, | |||
| const int32_t& stage_id) const override { | |||
| return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id); | |||
| } | |||
| double GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs, | |||
| const int32_t& stage_id) const override; | |||
| double GetBackwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs, | |||
| const int32_t&) const override; | |||
| }; | |||
| using GatherV2CostPtr = std::shared_ptr<GatherV2Cost>; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| #endif // PARALLEL_AUTO_PARALLEL_OPERATOR_COSTMODEL_H_ | |||
| @@ -228,26 +228,6 @@ void SparseSoftmaxCrossEntropyWithLogitsInfo::ReComputeBatchSplitFlagList() { | |||
| } | |||
| } | |||
| void GatherV2Info::ReComputeBatchSplitFlagList() { | |||
| MS_ASSERT(inputs_shape_.size() == 2); | |||
| MS_ASSERT(input_value_.size() == 3); | |||
| MS_ASSERT(input_value_[0] == nullptr); | |||
| // the second input is the index tensor | |||
| MS_ASSERT(input_value_[1] != nullptr); | |||
| // the third input is the axis | |||
| MS_ASSERT(input_value_[2] != nullptr); | |||
| int axis = GetValue<int>(input_value_[2]); | |||
| MS_ASSERT(axis < inputs_shape_[0].size() && axis >= 0 - inputs_shape_[0].size()); | |||
| if (axis < 0) { | |||
| axis += SizeToInt(inputs_shape_[0].size()); | |||
| } | |||
| split_flag_list_[0] = true; | |||
| // if gather axis is 0, the index's strategy is equal to device number | |||
| if (axis == 0) { | |||
| split_flag_list_[1] = true; | |||
| } | |||
| } | |||
| Status BatchParallelInfo::InferAsLossDivisor() { | |||
| as_loss_divisor_ = 1; | |||
| return SUCCESS; | |||
| @@ -62,15 +62,6 @@ class SparseSoftmaxCrossEntropyWithLogitsInfo : public BatchParallelInfo { | |||
| ~SparseSoftmaxCrossEntropyWithLogitsInfo() override = default; | |||
| void ReComputeBatchSplitFlagList() override; | |||
| }; | |||
| class GatherV2Info : public BatchParallelInfo { | |||
| public: | |||
| GatherV2Info(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape, | |||
| const PrimitiveAttrs& attrs) | |||
| : BatchParallelInfo(name, inputs_shape, outputs_shape, attrs) {} | |||
| ~GatherV2Info() override = default; | |||
| void ReComputeBatchSplitFlagList() override; | |||
| }; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,350 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "parallel/ops_info/gather_v2_info.h" | |||
| #include <memory> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "ir/meta_tensor.h" | |||
| #include "ir/value.h" | |||
| #include "parallel/auto_parallel/costmodel.h" | |||
| #include "parallel/device_matrix.h" | |||
| #include "parallel/graph_util/generate_graph.h" | |||
| #include "parallel/strategy.h" | |||
| #include "utils/log_adapter.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| Status GatherV2Info::GetAttrs() { | |||
| if (inputs_shape_.size() != GATHER_V2_INPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": inputs shape size must be 2, but is " << inputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| if (outputs_shape_.size() != GATHER_V2_OUTPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": outputs shape size must be 1, but is " << outputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| if (input_value_.size() != GATHER_V2_INPUTS_VALUE_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": input value size must be 3, but is " << input_value_.size(); | |||
| return FAILED; | |||
| } | |||
| // the second input is the index tensor | |||
| // the third input is the axis, is a ValueNode | |||
| if (input_value_.at(2) == nullptr) { | |||
| MS_LOG(ERROR) << name_ << ": the third input value is nullptr, is not a ValueNode!"; | |||
| return FAILED; | |||
| } | |||
| if (inputs_shape_.at(0).size() == 0) { | |||
| MS_LOG(ERROR) << name_ << ": input can not be a scalar!"; | |||
| return FAILED; | |||
| } | |||
| int axis = GetValue<int>(input_value_.at(2)); | |||
| if (axis >= SizeToInt(inputs_shape_.at(0).size()) || axis < 0 - SizeToInt(inputs_shape_.at(0).size())) { | |||
| MS_LOG(ERROR) << "Axis is " << axis << ", not in [-" << inputs_shape_.at(0).size() << ", " | |||
| << inputs_shape_.at(0).size() << ")."; | |||
| } | |||
| if (axis < 0) { | |||
| axis += SizeToInt(inputs_shape_[0].size()); | |||
| } | |||
| axis_ = axis; | |||
| index_size_ = inputs_shape_.at(1).size(); | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2Info::CheckStrategy(const StrategyPtr& strategy) { | |||
| if (inputs_shape_.size() != GATHER_V2_INPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": inputs shape size must be " << GATHER_V2_INPUTS_SIZE << ", but is " | |||
| << inputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| if (outputs_shape_.size() != GATHER_V2_OUTPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": outputs shape size must be " << GATHER_V2_OUTPUTS_SIZE << ", but is " | |||
| << outputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| // Only strategy of the first input should be set. | |||
| if (CheckStrategyValue(strategy, {inputs_shape_.at(0)}, is_auto_parallel_) != SUCCESS) { | |||
| if (is_auto_parallel_) { | |||
| MS_LOG(DEBUG) << name_ << ": Invalid strategy."; | |||
| } else { | |||
| MS_LOG(ERROR) << name_ << ": Invalid strategy."; | |||
| } | |||
| return FAILED; | |||
| } | |||
| axis_strategy_ = strategy->GetInputDim().at(0).at(axis_); | |||
| if (index_size_ != 1 && axis_strategy_ != 1) { | |||
| MS_LOG(ERROR) << name_ | |||
| << ": Invalid strategy. If the index is a scalar or a more than 1 dimension vector, the strategy " | |||
| "corresponding to axis must be 1, but is " | |||
| << axis_strategy_; | |||
| return FAILED; | |||
| } | |||
| if (index_size_ == 1 && axis_strategy_ != 1 && inputs_shape_.at(1).at(0) % axis_strategy_ != 0) { | |||
| MS_LOG(ERROR) << name_ | |||
| << ": Invalid strategy. The first dimension of index can not be divided by strategy corresponding to " | |||
| "axis. The first dimension of index is " | |||
| << inputs_shape_.at(1).at(0) << " strategy corresponding to axis is " << axis_strategy_; | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2Info::InferDevMatrixShape() { | |||
| std::vector<Dimensions> stra = strategy_->GetInputDim(); | |||
| dev_matrix_shape_ = stra.at(0); | |||
| return SUCCESS; | |||
| } | |||
| // If index is a scalar, output dimension is input dimension minus 1; | |||
| // If index is a n dimension tensor, output dimension is input dimension plus (n - 1). | |||
| // Tensor map dimension is equal to the corresponding input and output dimension. | |||
| // If index's dimension is more than 1, we insert -1 for the output tensor map. | |||
| Status GatherV2Info::InferTensorMap() { | |||
| if (inputs_shape_.size() != GATHER_V2_INPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": inputs shape size must be " << GATHER_V2_INPUTS_SIZE << ", but is " | |||
| << inputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| if (outputs_shape_.size() != GATHER_V2_OUTPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": outputs shape size must be " << GATHER_V2_OUTPUTS_SIZE << ", but is " | |||
| << outputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| std::vector<int32_t> tensor_map_in; | |||
| std::vector<int32_t> tensor_map_out; | |||
| size_t size = inputs_shape_.at(0).size(); | |||
| // such as 4: tensor_map_index [3,2,1,0] | |||
| for (size_t i = 0; i < size; ++i) { | |||
| tensor_map_in.push_back(SizeToInt(size - i - 1)); | |||
| tensor_map_out.push_back(SizeToInt(size - i - 1)); | |||
| } | |||
| if (index_size_ == 0) { | |||
| (void)tensor_map_out.erase(tensor_map_out.begin() + axis_); | |||
| } else if (index_size_ > 1) { | |||
| (void)tensor_map_out.insert(tensor_map_out.begin() + axis_, index_size_ - 1, -1); | |||
| } | |||
| if (tensor_map_out.size() != outputs_shape_.at(0).size()) { | |||
| MS_LOG(ERROR) << "Out tensor map size is not equal to output size! Out tensor map size is " << tensor_map_out.size() | |||
| << " output size is " << outputs_shape_.at(0).size(); | |||
| return FAILED; | |||
| } | |||
| std::vector<int32_t> tensor_map_in_index; | |||
| if (index_size_ >= 1) { | |||
| tensor_map_in_index.push_back(SizeToInt(size - axis_ - 1)); | |||
| } | |||
| for (size_t i = 1; i < index_size_; ++i) { | |||
| tensor_map_in_index.push_back(-1); | |||
| } | |||
| inputs_tensor_map_.emplace_back(std::move(tensor_map_in)); | |||
| inputs_tensor_map_.emplace_back(std::move(tensor_map_in_index)); | |||
| outputs_tensor_map_.emplace_back(std::move(tensor_map_out)); | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2Info::InferTensorInfo() { | |||
| if (inputs_shape_.size() != GATHER_V2_INPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": inputs shape size must be " << GATHER_V2_INPUTS_SIZE << ", but is " | |||
| << inputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| if (outputs_shape_.size() != GATHER_V2_OUTPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": outputs shape size must be " << GATHER_V2_OUTPUTS_SIZE << ", but is " | |||
| << outputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| if (inputs_tensor_map_.size() != GATHER_V2_INPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": inputs tensor map size must be " << GATHER_V2_INPUTS_SIZE << ", but is " | |||
| << inputs_tensor_map_.size(); | |||
| return FAILED; | |||
| } | |||
| if (outputs_tensor_map_.size() != GATHER_V2_OUTPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": outputs tensor map size must be " << GATHER_V2_OUTPUTS_SIZE << ", but is " | |||
| << outputs_tensor_map_.size(); | |||
| return FAILED; | |||
| } | |||
| // infer tensor shape | |||
| Shape input_shape = inputs_shape_.at(0); | |||
| Shape input_index_shape = inputs_shape_.at(1); | |||
| Shape output_shape = outputs_shape_.at(0); | |||
| TensorLayout input_tensor_layout, input_index_layout, output_tensor_layout; | |||
| if ((input_tensor_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_.at(0), input_shape) != SUCCESS) || | |||
| (input_index_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_.at(1), input_index_shape) != SUCCESS) || | |||
| (output_tensor_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_.at(0), output_shape) != SUCCESS)) { | |||
| return FAILED; | |||
| } | |||
| TensorInfo input_tensor_info(input_tensor_layout); | |||
| TensorInfo input_index_info(input_index_layout); | |||
| TensorInfo output_tensor_info(output_tensor_layout); | |||
| inputs_tensor_info_.push_back(input_tensor_info); | |||
| inputs_tensor_info_.push_back(input_index_info); | |||
| outputs_tensor_info_.push_back(output_tensor_info); | |||
| return SUCCESS; | |||
| } | |||
| OperatorVector CreateSubOp(int32_t sub_value) { | |||
| OperatorVector ops; | |||
| OperatorName operator_name = SUB; | |||
| OperatorAttrs operator_attrs; | |||
| py::tuple tuple = py::make_tuple(sub_value); | |||
| mindspore::tensor::TensorPtr tensor_ptr = std::make_shared<mindspore::tensor::Tensor>(tuple, kInt32); | |||
| ValuePtr op_param_value = MakeValue(tensor_ptr); | |||
| Attr op1_param = std::make_pair("", op_param_value); | |||
| OperatorParams operator_param = {std::make_pair(op1_param, 2)}; | |||
| OperatorArgs operator_args = std::make_pair(operator_attrs, operator_param); | |||
| Operator op = std::make_pair(operator_name, operator_args); | |||
| ops.push_back(op); | |||
| return ops; | |||
| } | |||
| Status GatherV2Info::InferTensorSubOps() { | |||
| sub_ops_.clear(); | |||
| if ((index_size_ == 0) || (axis_strategy_ == 1)) { | |||
| return SUCCESS; | |||
| } | |||
| int32_t mod_n = 1; | |||
| for (size_t i = IntToSize(axis_) + 1; i < dev_matrix_shape_.size(); i++) { | |||
| mod_n *= dev_matrix_shape_.at(i); | |||
| } | |||
| if ((axis_ >= SizeToInt(dev_matrix_shape_.size())) || axis_ < 0) { | |||
| MS_LOG(ERROR) << "Axis is " << axis_ << ", not in [0, " << dev_matrix_shape_.size() << ")."; | |||
| } | |||
| int32_t mod_p = mod_n * dev_matrix_shape_.at(axis_); | |||
| int32_t rank = g_device_manager->global_rank(); | |||
| int32_t mod_rank = rank % mod_p; | |||
| mod_rank = static_cast<int32_t>(mod_rank / mod_n); | |||
| if (inputs_shape_.size() != GATHER_V2_INPUTS_SIZE) { | |||
| MS_LOG(ERROR) << name_ << ": inputs shape size must be " << GATHER_V2_INPUTS_SIZE << ", but is " | |||
| << inputs_shape_.size(); | |||
| return FAILED; | |||
| } | |||
| if ((axis_ >= SizeToInt(inputs_shape_.at(0).size())) || axis_ < 0) { | |||
| MS_LOG(ERROR) << "Axis is " << axis_ << ", not in [0, " << inputs_shape_.at(0).size() << ")."; | |||
| } | |||
| int32_t sub_value = static_cast<int32_t>(inputs_shape_.at(0).at(axis_) / dev_matrix_shape_.at(axis_)) * mod_rank; | |||
| OperatorVector sub_op; | |||
| sub_ops_.emplace_back(std::move(sub_op)); | |||
| sub_op = CreateSubOp(sub_value); | |||
| sub_ops_.emplace_back(std::move(sub_op)); | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2Info::Init(const StrategyPtr& strategy) { | |||
| if (InitWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": Init failed."; | |||
| return FAILED; | |||
| } | |||
| Status status = InferTensorSubOps(); | |||
| if (status != SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << ": InferTensorSubOps failed."; | |||
| return status; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init success."; | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2Info::InitForCostModel(const StrategyPtr& strategy) { | |||
| if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) { | |||
| if (is_auto_parallel_) { | |||
| MS_LOG(DEBUG) << name_ << ": Init for cost model failed."; | |||
| } else { | |||
| MS_LOG(ERROR) << name_ << ": Init for cost model failed."; | |||
| } | |||
| return FAILED; | |||
| } | |||
| MS_LOG(INFO) << name_ << ": Init for cost model success."; | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2Info::GenerateStrategies(int32_t stage_id) { | |||
| if ((inputs_shape_.size() != GATHER_V2_INPUTS_SIZE) || (outputs_shape_.size() != GATHER_V2_OUTPUTS_SIZE)) { | |||
| MS_LOG(ERROR) << name_ << " : Inputs shape size(" << inputs_shape_.size() << ") or outputs shape size(" | |||
| << outputs_shape_.size() << "is wrong."; | |||
| return FAILED; | |||
| } | |||
| is_auto_parallel_ = true; | |||
| Shape input0_split(inputs_shape_[0].size()); | |||
| Shapes splittable_inputs = {input0_split}; | |||
| std::vector<StrategyPtr> sp_vector; | |||
| if (GenerateStrategiesForIndependentInputs(stage_id, {inputs_shape_.at(0)}, splittable_inputs, &sp_vector) != | |||
| SUCCESS) { | |||
| MS_LOG(ERROR) << name_ << " : Generate strategies for independent inputs() failed."; | |||
| return FAILED; | |||
| } | |||
| size_t success = 0; | |||
| for (auto& sp : sp_vector) { | |||
| if (SetCostUnderStrategy(sp) == SUCCESS) { | |||
| success++; | |||
| MS_LOG(INFO) << name_ << " : Successfully generated " << success << " strategy"; | |||
| PrintStrategy(sp); | |||
| } | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| Status GatherV2Info::SetCostUnderStrategy(const StrategyPtr& strategy) { | |||
| if (SetCostUnderStrategyBase(strategy) != SUCCESS) { | |||
| if (is_auto_parallel_) { | |||
| MS_LOG(DEBUG) << name_ << ": Set cost under strategy failed."; | |||
| } else { | |||
| MS_LOG(ERROR) << name_ << ": Set cost under strategy failed."; | |||
| } | |||
| return FAILED; | |||
| } | |||
| return SUCCESS; | |||
| } | |||
| std::shared_ptr<std::vector<std::vector<int32_t>>> GatherV2Info::GenerateBatchStrategies() { | |||
| if (inputs_shape_.size() != GATHER_V2_INPUTS_SIZE) { | |||
| MS_LOG(EXCEPTION) << name_ << ": inputs shape size must be " << GATHER_V2_INPUTS_SIZE << ", but is " | |||
| << inputs_shape_.size(); | |||
| } | |||
| CheckGlobalDeviceManager(); | |||
| size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size(); | |||
| if (GetAttrs() != SUCCESS) { | |||
| MS_LOG(EXCEPTION) << "GetAttrs failed!"; | |||
| } | |||
| Dimensions strategy; | |||
| if (index_size_ != 1) { | |||
| strategy.push_back(1); | |||
| } else { | |||
| strategy.push_back(SizeToInt(dev_num)); | |||
| } | |||
| for (size_t i = 1; i < inputs_shape_[0].size(); i++) { | |||
| strategy.push_back(1); | |||
| } | |||
| std::vector<Dimensions> strategy_v = {strategy}; | |||
| return std::make_shared<std::vector<std::vector<int32_t>>>(strategy_v); | |||
| } | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,73 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GATHER_V2_INFO_H_ | |||
| #define MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GATHER_V2_INFO_H_ | |||
| #include <memory> | |||
| #include <string> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include "ir/value.h" | |||
| #include "parallel/auto_parallel/operator_costmodel.h" | |||
| #include "parallel/ops_info/operator_info.h" | |||
| #include "parallel/strategy.h" | |||
| namespace mindspore { | |||
| namespace parallel { | |||
| constexpr size_t GATHER_V2_INPUTS_SIZE = 2; | |||
| constexpr size_t GATHER_V2_OUTPUTS_SIZE = 1; | |||
| constexpr size_t GATHER_V2_INPUTS_VALUE_SIZE = 3; | |||
| // We now supported limited parallel strategies. | |||
| // If the strategy corresponding to axis is more than 1, index must be evenly distributed across the axis-dimension of | |||
| // the input. | |||
| // If Index is a scalar or n-dimension vector(n > 1), the strategy corresponding to axis must be 1. | |||
| class GatherV2Info : public OperatorInfo { | |||
| public: | |||
| GatherV2Info(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape, | |||
| const PrimitiveAttrs& attrs) | |||
| : OperatorInfo(name, inputs_shape, outputs_shape, attrs, std::make_shared<GatherV2Cost>()), | |||
| axis_(-1), | |||
| index_size_(0), | |||
| axis_strategy_(1) {} | |||
| ~GatherV2Info() override = default; | |||
| Status Init(const StrategyPtr& strategy) override; | |||
| Status InitForCostModel(const StrategyPtr& strategy) override; | |||
| Status GenerateStrategies(int32_t stage_id) override; | |||
| Status SetCostUnderStrategy(const StrategyPtr& strategy) override; | |||
| std::shared_ptr<std::vector<std::vector<int32_t>>> GenerateBatchStrategies() override; | |||
| protected: | |||
| Status CheckStrategy(const StrategyPtr& strategy) override; | |||
| Status InferMirrorOps() override { return SUCCESS; } | |||
| Status InferForwardCommunication() override { return SUCCESS; } | |||
| Status InferTensorInfo() override; | |||
| Status InferDevMatrixShape() override; | |||
| Status InferTensorMap() override; | |||
| Status GetAttrs() override; | |||
| private: | |||
| Status InferTensorSubOps(); | |||
| int32_t axis_; | |||
| size_t index_size_; | |||
| int32_t axis_strategy_; | |||
| }; | |||
| } // namespace parallel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GATHER_V2_INFO_H_ | |||
| @@ -112,6 +112,7 @@ void OperatorInfo::ResetQueueMember() { | |||
| dev_matrix_shape_.clear(); | |||
| forward_op_.clear(); | |||
| mirror_ops_.clear(); | |||
| sub_ops_.clear(); | |||
| replace_op_.clear(); | |||
| replace_op_info_.clear(); | |||
| virtual_div_op_.clear(); | |||
| @@ -41,6 +41,7 @@ namespace mindspore { | |||
| namespace parallel { | |||
| using ForwardOp = OperatorVector; | |||
| using MirrorOps = std::vector<OperatorVector>; | |||
| using Ops = std::vector<OperatorVector>; | |||
| using VirtualDivOp = OperatorVector; | |||
| using TensorMaps = std::vector<std::vector<int32_t>>; | |||
| using TensorLayouts = std::vector<TensorLayout>; | |||
| @@ -99,6 +100,7 @@ class OperatorInfo { | |||
| OutPutInfoVector replace_op_info() const { return replace_op_info_; } | |||
| virtual ReplaceGraphPtr replace_graph(const CNodePtr&) { return replace_graph_; } | |||
| MirrorOps mirror_ops() const { return mirror_ops_; } | |||
| Ops sub_ops() const { return sub_ops_; } | |||
| VirtualDivOp virtual_div_op() const { return virtual_div_op_; } | |||
| Shape dev_matrix_shape() const { return dev_matrix_shape_; } | |||
| std::vector<TensorInfo> inputs_tensor_info() const { return inputs_tensor_info_; } | |||
| @@ -190,6 +192,7 @@ class OperatorInfo { | |||
| TensorMaps inputs_tensor_map_; | |||
| TensorMaps outputs_tensor_map_; | |||
| ForwardOp forward_op_; | |||
| Ops sub_ops_; | |||
| ForwardOp replace_op_; | |||
| OutPutInfoVector replace_op_info_; | |||
| ReplaceGraphPtr replace_graph_; | |||
| @@ -24,6 +24,7 @@ | |||
| #include "parallel/ops_info/comparison_function_info.h" | |||
| #include "parallel/ops_info/dropout_do_mask_info.h" | |||
| #include "parallel/ops_info/elementary_function_info.h" | |||
| #include "parallel/ops_info/gather_v2_info.h" | |||
| #include "parallel/ops_info/get_next_info.h" | |||
| #include "parallel/ops_info/l2_normalize_info.h" | |||
| #include "parallel/ops_info/loss_info.h" | |||
| @@ -464,6 +464,14 @@ void SplitTensor(const AnfNodePtr& node, const CNodePtr& next_node, int index) { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| Operator op = CreateGetTensorSliceOp(tensor_layout); | |||
| InsertGetTensorSliceOp(op, next_node, func_graph, index, SPLIT_TENSOR); | |||
| if (!op_info->sub_ops().empty()) { | |||
| auto sub_ops = op_info->sub_ops(); | |||
| for (size_t i = 0; i < sub_ops.size(); i++) { | |||
| if (!sub_ops.at(i).empty()) { | |||
| InsertGetTensorSliceOp(sub_ops.at(i).at(0), next_node, func_graph, index, SUB); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| void StepSplitTensor(const AnfNodePtr& node, const FuncGraphManagerPtr& manager) { | |||
| @@ -29,6 +29,8 @@ from mindspore.nn import Dense, Cell | |||
| from mindspore import context | |||
| context.set_context(mode=context.GRAPH_MODE) | |||
| device_number = 32 | |||
| batch_size_per_device = 128 | |||
| class Dataset(): | |||
| @@ -57,15 +59,22 @@ class Dataset(): | |||
| class GatherV2(_Loss): | |||
| def __init__(self, batchsize): | |||
| def __init__(self, index_dim, strategy, index_size=16): | |||
| super(GatherV2, self).__init__() | |||
| self.pow = P.Pow() | |||
| emb_list = list(range(batchsize)) | |||
| emb1_list = emb_list[0::2] | |||
| emb2_list = emb_list[1::2] | |||
| emb1_list = 21 | |||
| emb2_list = 2 | |||
| if index_dim == 1: | |||
| emb_list = list(range(index_size)) | |||
| emb1_list = emb_list[0::2] | |||
| emb2_list = emb_list[1::2] | |||
| if index_dim == 2: | |||
| emb_list = np.arange(index_size*16) | |||
| emb1_list = np.reshape(emb_list[0::2], (int(index_size/2), 16)) | |||
| emb2_list = np.reshape(emb_list[1::2], (int(index_size/2), 16)) | |||
| self.emb1_param = Tensor(emb1_list, dtype=mstype.int32) | |||
| self.emb2_param = Tensor(emb2_list, dtype=mstype.int32) | |||
| self.gatherv2 = P.GatherV2() | |||
| self.gatherv2 = P.GatherV2().set_strategy(strategy) | |||
| def construct(self, nembeddings): | |||
| emb1 = self.gatherv2(nembeddings, self.emb1_param, 0) | |||
| @@ -73,10 +82,6 @@ class GatherV2(_Loss): | |||
| return self.pow((emb1 - emb2), 2.0) | |||
| def get_loss(batchsize): | |||
| return GatherV2(batchsize) | |||
| def fc_with_initialize(input_channels, out_channels): | |||
| return Dense(input_channels, out_channels) | |||
| @@ -114,26 +119,23 @@ class TrainOneStepCell(Cell): | |||
| return F.depend(loss, self.optimizer(grads)) | |||
| def test_trains(): | |||
| def net_trains(gather_v2_strategy, criterion, rank): | |||
| init() | |||
| lr = 0.1 | |||
| momentum = 0.9 | |||
| max_epoch = 20 | |||
| device_number = 32 | |||
| batch_size_per_device = 128 | |||
| input_channels = 256 | |||
| out_channels = 512 | |||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||
| context.reset_auto_parallel_context() | |||
| context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_number) | |||
| context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=device_number, | |||
| global_rank=rank) | |||
| predict = Tensor(np.ones([batch_size_per_device, input_channels]), dtype=ms.float32) | |||
| dataset = Dataset(predict, 4) | |||
| network = fc_with_initialize(input_channels, out_channels) | |||
| network.set_train() | |||
| criterion = get_loss(batch_size_per_device * device_number) | |||
| train_network = BuildTrainNetwork(network, criterion) | |||
| train_network.set_train() | |||
| opt = Momentum(train_network.trainable_params(), lr, momentum) | |||
| @@ -143,5 +145,90 @@ def test_trains(): | |||
| model.train(max_epoch, dataset, dataset_sink_mode=False) | |||
| context.reset_auto_parallel_context() | |||
| if __name__ == "__main__": | |||
| test_trains() | |||
| def test_auto_batch_parallel(): | |||
| gather_v2_strategy = None | |||
| criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) | |||
| rank = 2 | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| def test_2d_index_auto_batch_parallel(): | |||
| gather_v2_strategy = None | |||
| criterion = GatherV2(2, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) | |||
| rank = 2 | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| def test_batch_parallel(): | |||
| gather_v2_strategy = ((device_number, 1),) | |||
| criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) | |||
| rank = 2 | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| def test_strategy1(): | |||
| gather_v2_strategy = ((16, 2),) | |||
| rank = 2 | |||
| criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| def test_strategy2(): | |||
| gather_v2_strategy = ((1, device_number),) | |||
| rank = 2 | |||
| criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| def test_strategy3(): | |||
| gather_v2_strategy = ((8, 1),) | |||
| rank = 2 | |||
| criterion = GatherV2(1, strategy=gather_v2_strategy, index_size=batch_size_per_device * device_number) | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| class GatherV2Axis1(_Loss): | |||
| def __init__(self, index_dim, strategy, index_size=16): | |||
| super(GatherV2Axis1, self).__init__() | |||
| self.pow = P.Pow() | |||
| emb1_list = 21 | |||
| emb2_list = 2 | |||
| if index_dim == 1: | |||
| emb_list = list(range(index_size)) | |||
| emb1_list = emb_list[0::2] | |||
| emb2_list = emb_list[1::2] | |||
| if index_dim == 2: | |||
| emb_list = np.arange(index_size*index_size) | |||
| emb1_list = np.reshape(emb_list[0::2], (int(index_size/2), index_size)) | |||
| emb2_list = np.reshape(emb_list[1::2], (int(index_size/2), index_size)) | |||
| self.emb1_param = Tensor(emb1_list, dtype=mstype.int32) | |||
| self.emb2_param = Tensor(emb2_list, dtype=mstype.int32) | |||
| self.gatherv2 = P.GatherV2().set_strategy(strategy) | |||
| def construct(self, nembeddings): | |||
| emb1 = self.gatherv2(nembeddings, self.emb1_param, 1) | |||
| emb2 = self.gatherv2(nembeddings, self.emb2_param, 1) | |||
| return self.pow((emb1 - emb2), 2.0) | |||
| def test_axis1_auto_batch_parallel(): | |||
| gather_v2_strategy = None | |||
| criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512) | |||
| rank = 2 | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| def test_axis1_batch_parallel(): | |||
| gather_v2_strategy = ((device_number, 1),) | |||
| criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512) | |||
| rank = 2 | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||
| def test_axis1_strategy1(): | |||
| gather_v2_strategy = ((16, 2),) | |||
| rank = 17 | |||
| criterion = GatherV2Axis1(1, strategy=gather_v2_strategy, index_size=512) | |||
| net_trains(gather_v2_strategy, criterion, rank) | |||