|
|
|
@@ -0,0 +1,44 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(Net, self).__init__() |
|
|
|
self.unique = P.Unique() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
return self.unique(x) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_unqiue(): |
|
|
|
x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32) |
|
|
|
unique = Net() |
|
|
|
output = unique(x) |
|
|
|
expect1 = np.array([1, 2, 3]) |
|
|
|
expect2 = np.array([0, 0, 1, 1, 2, 2]) |
|
|
|
assert (output[0].asnumpy() == expect1).all() |
|
|
|
assert (output[1].asnumpy() == expect2).all() |