| @@ -0,0 +1,128 @@ | |||
| # ResNext50 Example | |||
| ## Description | |||
| This is an example of training ResNext50 with ImageNet dataset in Mindspore. | |||
| ## Requirements | |||
| - Install [Mindspore](http://www.mindspore.cn/install/en). | |||
| - Downlaod the dataset ImageNet2012. | |||
| ## Structure | |||
| ```shell | |||
| . | |||
| └─resnext50 | |||
| ├─README.md | |||
| ├─scripts | |||
| ├─run_standalone_train.sh # launch standalone training(1p) | |||
| ├─run_distribute_train.sh # launch distributed training(8p) | |||
| └─run_eval.sh # launch evaluating | |||
| ├─src | |||
| ├─backbone | |||
| ├─_init_.py # initalize | |||
| ├─resnet.py # resnext50 backbone | |||
| ├─utils | |||
| ├─_init_.py # initalize | |||
| ├─cunstom_op.py # network operation | |||
| ├─logging.py # print log | |||
| ├─optimizers_init_.py # get parameters | |||
| ├─sampler.py # distributed sampler | |||
| ├─var_init_.py # calculate gain value | |||
| ├─_init_.py # initalize | |||
| ├─config.py # parameter configuration | |||
| ├─crossentropy.py # CrossEntropy loss function | |||
| ├─dataset.py # data preprocessing | |||
| ├─head.py # commom head | |||
| ├─image_classification.py # get resnet | |||
| ├─linear_warmup.py # linear warmup learning rate | |||
| ├─warmup_cosine_annealing.py # learning rate each step | |||
| ├─warmup_step_lr.py # warmup step learning rate | |||
| ├─eval.py # eval net | |||
| └─train.py # train net | |||
| ``` | |||
| ## Parameter Configuration | |||
| Parameters for both training and evaluating can be set in config.py | |||
| ``` | |||
| "image_height": '224,224' # image size | |||
| "num_classes": 1000, # dataset class number | |||
| "per_batch_size": 128, # batch size of input tensor | |||
| "lr": 0.05, # base learning rate | |||
| "lr_scheduler": 'cosine_annealing', # learning rate mode | |||
| "lr_epochs": '30,60,90,120', # epoch of lr changing | |||
| "lr_gamma": 0.1, # decrease lr by a factor of exponential lr_scheduler | |||
| "eta_min": 0, # eta_min in cosine_annealing scheduler | |||
| "T_max": 150, # T-max in cosine_annealing scheduler | |||
| "max_epoch": 150, # max epoch num to train the model | |||
| "backbone": 'resnext50', # backbone metwork | |||
| "warmup_epochs" : 1, # warmup epoch | |||
| "weight_decay": 0.0001, # weight decay | |||
| "momentum": 0.9, # momentum | |||
| "is_dynamic_loss_scale": 0, # dynamic loss scale | |||
| "loss_scale": 1024, # loss scale | |||
| "label_smooth": 1, # label_smooth | |||
| "label_smooth_factor": 0.1, # label_smooth_factor | |||
| "ckpt_interval": 2000, # ckpt_interval | |||
| "ckpt_path": 'outputs/', # checkpoint save location | |||
| "is_save_on_master": 1, | |||
| "rank": 0, # local rank of distributed | |||
| "group_size": 1 # world size of distributed | |||
| ``` | |||
| ## Running the example | |||
| ### Train | |||
| #### Usage | |||
| ``` | |||
| # distribute training example(8p) | |||
| sh run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH DATA_PATH | |||
| # standalone training | |||
| sh run_standalone_train.sh DEVICE_ID DATA_PATH | |||
| ``` | |||
| #### Launch | |||
| ```bash | |||
| # distributed training example(8p) | |||
| sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH /ImageNet/train | |||
| # standalone training example | |||
| sh scripts/run_standalone_train.sh 0 /ImageNet_Original/train | |||
| ``` | |||
| #### Result | |||
| You can find checkpoint file together with result in log. | |||
| ### Evaluation | |||
| #### Usage | |||
| ``` | |||
| # Evaluation | |||
| sh run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH | |||
| ``` | |||
| #### Launch | |||
| ```bash | |||
| # Evaluation with checkpoint | |||
| sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt | |||
| ``` | |||
| > checkpoint can be produced in training process. | |||
| #### Result | |||
| Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log. | |||
| ``` | |||
| acc=78,16%(TOP1) | |||
| acc=93.88%(TOP5) | |||
| ``` | |||
| @@ -0,0 +1,243 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Eval""" | |||
| import os | |||
| import time | |||
| import argparse | |||
| import datetime | |||
| import glob | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor, context | |||
| from mindspore.communication.management import init, get_rank, get_group_size, release | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import functional as F | |||
| from mindspore.common import dtype as mstype | |||
| from src.utils.logging import get_logger | |||
| from src.image_classification import get_network | |||
| from src.dataset import classification_dataset | |||
| from src.config import config | |||
| devid = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, | |||
| device_target="Ascend", save_graphs=False, device_id=devid) | |||
| class ParameterReduce(nn.Cell): | |||
| """ParameterReduce""" | |||
| def __init__(self): | |||
| super(ParameterReduce, self).__init__() | |||
| self.cast = P.Cast() | |||
| self.reduce = P.AllReduce() | |||
| def construct(self, x): | |||
| one = self.cast(F.scalar_to_array(1.0), mstype.float32) | |||
| out = x * one | |||
| ret = self.reduce(out) | |||
| return ret | |||
| def parse_args(cloud_args=None): | |||
| """parse_args""" | |||
| parser = argparse.ArgumentParser('mindspore classification test') | |||
| # dataset related | |||
| parser.add_argument('--data_dir', type=str, default='/opt/npu/datasets/classification/val', help='eval data dir') | |||
| parser.add_argument('--per_batch_size', default=32, type=int, help='batch size for per npu') | |||
| # network related | |||
| parser.add_argument('--graph_ckpt', type=int, default=1, help='graph ckpt or feed ckpt') | |||
| parser.add_argument('--pretrained', default='', type=str, help='fully path of pretrained model to load. ' | |||
| 'If it is a direction, it will test all ckpt') | |||
| # logging related | |||
| parser.add_argument('--log_path', type=str, default='outputs/', help='path to save log') | |||
| parser.add_argument('--is_distributed', type=int, default=0, help='if multi device') | |||
| # roma obs | |||
| parser.add_argument('--train_url', type=str, default="", help='train url') | |||
| args, _ = parser.parse_known_args() | |||
| args = merge_args(args, cloud_args) | |||
| args.image_size = config.image_size | |||
| args.num_classes = config.num_classes | |||
| args.backbone = config.backbone | |||
| args.rank = config.rank | |||
| args.group_size = config.group_size | |||
| args.image_size = list(map(int, args.image_size.split(','))) | |||
| return args | |||
| def get_top5_acc(top5_arg, gt_class): | |||
| sub_count = 0 | |||
| for top5, gt in zip(top5_arg, gt_class): | |||
| if gt in top5: | |||
| sub_count += 1 | |||
| return sub_count | |||
| def merge_args(args, cloud_args): | |||
| """merge_args""" | |||
| args_dict = vars(args) | |||
| if isinstance(cloud_args, dict): | |||
| for key in cloud_args.keys(): | |||
| val = cloud_args[key] | |||
| if key in args_dict and val: | |||
| arg_type = type(args_dict[key]) | |||
| if arg_type is not type(None): | |||
| val = arg_type(val) | |||
| args_dict[key] = val | |||
| return args | |||
| def test(cloud_args=None): | |||
| """test""" | |||
| args = parse_args(cloud_args) | |||
| # init distributed | |||
| if args.is_distributed: | |||
| init() | |||
| args.rank = get_rank() | |||
| args.group_size = get_group_size() | |||
| args.outputs_dir = os.path.join(args.log_path, | |||
| datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) | |||
| args.logger = get_logger(args.outputs_dir, args.rank) | |||
| args.logger.save_args(args) | |||
| # network | |||
| args.logger.important_info('start create network') | |||
| if os.path.isdir(args.pretrained): | |||
| models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt'))) | |||
| print(models) | |||
| if args.graph_ckpt: | |||
| f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split('_')[0]) | |||
| else: | |||
| f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('_')[-1]) | |||
| args.models = sorted(models, key=f) | |||
| else: | |||
| args.models = [args.pretrained,] | |||
| for model in args.models: | |||
| de_dataset = classification_dataset(args.data_dir, image_size=args.image_size, | |||
| per_batch_size=args.per_batch_size, | |||
| max_epoch=1, rank=args.rank, group_size=args.group_size, | |||
| mode='eval') | |||
| eval_dataloader = de_dataset.create_tuple_iterator() | |||
| network = get_network(args.backbone, args.num_classes) | |||
| if network is None: | |||
| raise NotImplementedError('not implement {}'.format(args.backbone)) | |||
| param_dict = load_checkpoint(model) | |||
| param_dict_new = {} | |||
| for key, values in param_dict.items(): | |||
| if key.startswith('moments.'): | |||
| continue | |||
| elif key.startswith('network.'): | |||
| param_dict_new[key[8:]] = values | |||
| else: | |||
| param_dict_new[key] = values | |||
| load_param_into_net(network, param_dict_new) | |||
| args.logger.info('load model {} success'.format(model)) | |||
| # must add | |||
| network.add_flags_recursive(fp16=True) | |||
| img_tot = 0 | |||
| top1_correct = 0 | |||
| top5_correct = 0 | |||
| network.set_train(False) | |||
| t_end = time.time() | |||
| it = 0 | |||
| for data, gt_classes in eval_dataloader: | |||
| output = network(Tensor(data, mstype.float32)) | |||
| output = output.asnumpy() | |||
| top1_output = np.argmax(output, (-1)) | |||
| top5_output = np.argsort(output)[:, -5:] | |||
| t1_correct = np.equal(top1_output, gt_classes).sum() | |||
| top1_correct += t1_correct | |||
| top5_correct += get_top5_acc(top5_output, gt_classes) | |||
| img_tot += args.per_batch_size | |||
| if args.rank == 0 and it == 0: | |||
| t_end = time.time() | |||
| it = 1 | |||
| if args.rank == 0: | |||
| time_used = time.time() - t_end | |||
| fps = (img_tot - args.per_batch_size) * args.group_size / time_used | |||
| args.logger.info('Inference Performance: {:.2f} img/sec'.format(fps)) | |||
| results = [[top1_correct], [top5_correct], [img_tot]] | |||
| args.logger.info('before results={}'.format(results)) | |||
| if args.is_distributed: | |||
| model_md5 = model.replace('/', '') | |||
| tmp_dir = '/cache' | |||
| if not os.path.exists(tmp_dir): | |||
| os.mkdir(tmp_dir) | |||
| top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(args.rank, model_md5) | |||
| top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(args.rank, model_md5) | |||
| img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(args.rank, model_md5) | |||
| np.save(top1_correct_npy, top1_correct) | |||
| np.save(top5_correct_npy, top5_correct) | |||
| np.save(img_tot_npy, img_tot) | |||
| while True: | |||
| rank_ok = True | |||
| for other_rank in range(args.group_size): | |||
| top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(other_rank, model_md5) | |||
| top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(other_rank, model_md5) | |||
| img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(other_rank, model_md5) | |||
| if not os.path.exists(top1_correct_npy) or not os.path.exists(top5_correct_npy) or \ | |||
| not os.path.exists(img_tot_npy): | |||
| rank_ok = False | |||
| if rank_ok: | |||
| break | |||
| top1_correct_all = 0 | |||
| top5_correct_all = 0 | |||
| img_tot_all = 0 | |||
| for other_rank in range(args.group_size): | |||
| top1_correct_npy = '/cache/top1_rank_{}_{}.npy'.format(other_rank, model_md5) | |||
| top5_correct_npy = '/cache/top5_rank_{}_{}.npy'.format(other_rank, model_md5) | |||
| img_tot_npy = '/cache/img_tot_rank_{}_{}.npy'.format(other_rank, model_md5) | |||
| top1_correct_all += np.load(top1_correct_npy) | |||
| top5_correct_all += np.load(top5_correct_npy) | |||
| img_tot_all += np.load(img_tot_npy) | |||
| results = [[top1_correct_all], [top5_correct_all], [img_tot_all]] | |||
| results = np.array(results) | |||
| else: | |||
| results = np.array(results) | |||
| args.logger.info('after results={}'.format(results)) | |||
| top1_correct = results[0, 0] | |||
| top5_correct = results[1, 0] | |||
| img_tot = results[2, 0] | |||
| acc1 = 100.0 * top1_correct / img_tot | |||
| acc5 = 100.0 * top5_correct / img_tot | |||
| args.logger.info('after allreduce eval: top1_correct={}, tot={},' | |||
| 'acc={:.2f}%(TOP1)'.format(top1_correct, img_tot, acc1)) | |||
| args.logger.info('after allreduce eval: top5_correct={}, tot={},' | |||
| 'acc={:.2f}%(TOP5)'.format(top5_correct, img_tot, acc5)) | |||
| if args.is_distributed: | |||
| release() | |||
| if __name__ == "__main__": | |||
| test() | |||
| @@ -0,0 +1,55 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| DATA_DIR=$2 | |||
| export RANK_TABLE_FILE=$1 | |||
| export RANK_SIZE=8 | |||
| PATH_CHECKPOINT="" | |||
| if [ $# == 3 ] | |||
| then | |||
| PATH_CHECKPOINT=$3 | |||
| fi | |||
| cores=`cat /proc/cpuinfo|grep "processor" |wc -l` | |||
| echo "the number of logical core" $cores | |||
| avg_core_per_rank=`expr $cores \/ $RANK_SIZE` | |||
| core_gap=`expr $avg_core_per_rank \- 1` | |||
| echo "avg_core_per_rank" $avg_core_per_rank | |||
| echo "core_gap" $core_gap | |||
| for((i=0;i<RANK_SIZE;i++)) | |||
| do | |||
| start=`expr $i \* $avg_core_per_rank` | |||
| export DEVICE_ID=$i | |||
| export RANK_ID=$i | |||
| export DEPLOY_MODE=0 | |||
| export GE_USE_STATIC_MEMORY=1 | |||
| end=`expr $start \+ $core_gap` | |||
| cmdopt=$start"-"$end | |||
| rm -rf LOG$i | |||
| mkdir ./LOG$i | |||
| cp *.py ./LOG$i | |||
| cd ./LOG$i || exit | |||
| echo "start training for rank $i, device $DEVICE_ID" | |||
| env > env.log | |||
| taskset -c $cmdopt python ../train.py \ | |||
| --is_distribute=1 \ | |||
| --device_id=$DEVICE_ID \ | |||
| --pretrained=$PATH_CHECKPOINT \ | |||
| --data_dir=$DATA_DIR > log.txt 2>&1 & | |||
| cd ../ | |||
| done | |||
| @@ -0,0 +1,24 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| DEVICE_ID=$1 | |||
| DATA_DIR=$2 | |||
| PATH_CHECKPOINT=$3 | |||
| python eval.py \ | |||
| --device_id=$DEVICE_ID \ | |||
| --pretrained=$PATH_CHECKPOINT \ | |||
| --data_dir=$DATA_DIR > log.txt 2>&1 & | |||
| @@ -0,0 +1,30 @@ | |||
| #!/bin/bash | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| DEVICE_ID=$1 | |||
| DATA_DIR=$2 | |||
| PATH_CHECKPOINT="" | |||
| if [ $# == 3 ] | |||
| then | |||
| PATH_CHECKPOINT=$3 | |||
| fi | |||
| python train.py \ | |||
| --is_distribute=0 \ | |||
| --device_id=$DEVICE_ID \ | |||
| --pretrained=$PATH_CHECKPOINT \ | |||
| --data_dir=$DATA_DIR > log.txt 2>&1 & | |||
| @@ -0,0 +1,16 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """resnet""" | |||
| from .resnet import * | |||
| @@ -0,0 +1,273 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| ResNet based ResNext | |||
| """ | |||
| import mindspore.nn as nn | |||
| from mindspore.ops.operations import TensorAdd, Split, Concat | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.initializer import TruncatedNormal | |||
| from src.utils.cunstom_op import SEBlock, GroupConv | |||
| __all__ = ['ResNet', 'resnext50'] | |||
| def weight_variable(shape, factor=0.1): | |||
| return TruncatedNormal(0.02) | |||
| def conv7x7(in_channels, out_channels, stride=1, padding=3, has_bias=False, groups=1): | |||
| return nn.Conv2d(in_channels, out_channels, kernel_size=7, stride=stride, has_bias=has_bias, | |||
| padding=padding, pad_mode="pad", group=groups) | |||
| def conv3x3(in_channels, out_channels, stride=1, padding=1, has_bias=False, groups=1): | |||
| return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, has_bias=has_bias, | |||
| padding=padding, pad_mode="pad", group=groups) | |||
| def conv1x1(in_channels, out_channels, stride=1, padding=0, has_bias=False, groups=1): | |||
| return nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, has_bias=has_bias, | |||
| padding=padding, pad_mode="pad", group=groups) | |||
| class _DownSample(nn.Cell): | |||
| """ | |||
| Downsample for ResNext-ResNet. | |||
| Args: | |||
| in_channels (int): Input channels. | |||
| out_channels (int): Output channels. | |||
| stride (int): Stride size for the 1*1 convolutional layer. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>>DownSample(32, 64, 2) | |||
| """ | |||
| def __init__(self, in_channels, out_channels, stride): | |||
| super(_DownSample, self).__init__() | |||
| self.conv = conv1x1(in_channels, out_channels, stride=stride, padding=0) | |||
| self.bn = nn.BatchNorm2d(out_channels) | |||
| def construct(self, x): | |||
| out = self.conv(x) | |||
| out = self.bn(out) | |||
| return out | |||
| class BasicBlock(nn.Cell): | |||
| """ | |||
| ResNet basic block definition. | |||
| Args: | |||
| in_channels (int): Input channels. | |||
| out_channels (int): Output channels. | |||
| stride (int): Stride size for the first convolutional layer. Default: 1. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>>BasicBlock(32, 256, stride=2) | |||
| """ | |||
| expansion = 1 | |||
| def __init__(self, in_channels, out_channels, stride=1, down_sample=None, use_se=False, **kwargs): | |||
| super(BasicBlock, self).__init__() | |||
| self.conv1 = conv3x3(in_channels, out_channels, stride=stride) | |||
| self.bn1 = nn.BatchNorm2d(out_channels) | |||
| self.relu = P.ReLU() | |||
| self.conv2 = conv3x3(out_channels, out_channels, stride=1) | |||
| self.bn2 = nn.BatchNorm2d(out_channels) | |||
| self.use_se = use_se | |||
| if self.use_se: | |||
| self.se = SEBlock(out_channels) | |||
| self.down_sample_flag = False | |||
| if down_sample is not None: | |||
| self.down_sample = down_sample | |||
| self.down_sample_flag = True | |||
| self.add = TensorAdd() | |||
| def construct(self, x): | |||
| identity = x | |||
| out = self.conv1(x) | |||
| out = self.bn1(out) | |||
| out = self.relu(out) | |||
| out = self.conv2(out) | |||
| out = self.bn2(out) | |||
| if self.use_se: | |||
| out = self.se(out) | |||
| if self.down_sample_flag: | |||
| identity = self.down_sample(x) | |||
| out = self.add(out, identity) | |||
| out = self.relu(out) | |||
| return out | |||
| class Bottleneck(nn.Cell): | |||
| """ | |||
| ResNet Bottleneck block definition. | |||
| Args: | |||
| in_channels (int): Input channels. | |||
| out_channels (int): Output channels. | |||
| stride (int): Stride size for the initial convolutional layer. Default: 1. | |||
| Returns: | |||
| Tensor, the ResNet unit's output. | |||
| Examples: | |||
| >>>Bottleneck(3, 256, stride=2) | |||
| """ | |||
| expansion = 4 | |||
| def __init__(self, in_channels, out_channels, stride=1, down_sample=None, | |||
| base_width=64, groups=1, use_se=False, **kwargs): | |||
| super(Bottleneck, self).__init__() | |||
| width = int(out_channels * (base_width / 64.0)) * groups | |||
| self.groups = groups | |||
| self.conv1 = conv1x1(in_channels, width, stride=1) | |||
| self.bn1 = nn.BatchNorm2d(width) | |||
| self.relu = P.ReLU() | |||
| self.conv3x3s = nn.CellList() | |||
| self.conv2 = GroupConv(width, width, 3, stride, pad=1, groups=groups) | |||
| self.op_split = Split(axis=1, output_num=self.groups) | |||
| self.op_concat = Concat(axis=1) | |||
| self.bn2 = nn.BatchNorm2d(width) | |||
| self.conv3 = conv1x1(width, out_channels * self.expansion, stride=1) | |||
| self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) | |||
| self.use_se = use_se | |||
| if self.use_se: | |||
| self.se = SEBlock(out_channels * self.expansion) | |||
| self.down_sample_flag = False | |||
| if down_sample is not None: | |||
| self.down_sample = down_sample | |||
| self.down_sample_flag = True | |||
| self.cast = P.Cast() | |||
| self.add = TensorAdd() | |||
| def construct(self, x): | |||
| identity = x | |||
| out = self.conv1(x) | |||
| out = self.bn1(out) | |||
| out = self.relu(out) | |||
| out = self.conv2(out) | |||
| out = self.bn2(out) | |||
| out = self.relu(out) | |||
| out = self.conv3(out) | |||
| out = self.bn3(out) | |||
| if self.use_se: | |||
| out = self.se(out) | |||
| if self.down_sample_flag: | |||
| identity = self.down_sample(x) | |||
| out = self.add(out, identity) | |||
| out = self.relu(out) | |||
| return out | |||
| class ResNet(nn.Cell): | |||
| """ | |||
| ResNet architecture. | |||
| Args: | |||
| block (cell): Block for network. | |||
| layers (list): Numbers of block in different layers. | |||
| width_per_group (int): Width of every group. | |||
| groups (int): Groups number. | |||
| Returns: | |||
| Tuple, output tensor tuple. | |||
| Examples: | |||
| >>>ResNet() | |||
| """ | |||
| def __init__(self, block, layers, width_per_group=64, groups=1, use_se=False): | |||
| super(ResNet, self).__init__() | |||
| self.in_channels = 64 | |||
| self.groups = groups | |||
| self.base_width = width_per_group | |||
| self.conv = conv7x7(3, self.in_channels, stride=2, padding=3) | |||
| self.bn = nn.BatchNorm2d(self.in_channels) | |||
| self.relu = P.ReLU() | |||
| self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same') | |||
| self.layer1 = self._make_layer(block, 64, layers[0], use_se=use_se) | |||
| self.layer2 = self._make_layer(block, 128, layers[1], stride=2, use_se=use_se) | |||
| self.layer3 = self._make_layer(block, 256, layers[2], stride=2, use_se=use_se) | |||
| self.layer4 = self._make_layer(block, 512, layers[3], stride=2, use_se=use_se) | |||
| self.out_channels = 512 * block.expansion | |||
| self.cast = P.Cast() | |||
| def construct(self, x): | |||
| x = self.conv(x) | |||
| x = self.bn(x) | |||
| x = self.relu(x) | |||
| x = self.maxpool(x) | |||
| x = self.layer1(x) | |||
| x = self.layer2(x) | |||
| x = self.layer3(x) | |||
| x = self.layer4(x) | |||
| return x | |||
| def _make_layer(self, block, out_channels, blocks_num, stride=1, use_se=False): | |||
| """_make_layer""" | |||
| down_sample = None | |||
| if stride != 1 or self.in_channels != out_channels * block.expansion: | |||
| down_sample = _DownSample(self.in_channels, | |||
| out_channels * block.expansion, | |||
| stride=stride) | |||
| layers = [] | |||
| layers.append(block(self.in_channels, | |||
| out_channels, | |||
| stride=stride, | |||
| down_sample=down_sample, | |||
| base_width=self.base_width, | |||
| groups=self.groups, | |||
| use_se=use_se)) | |||
| self.in_channels = out_channels * block.expansion | |||
| for _ in range(1, blocks_num): | |||
| layers.append(block(self.in_channels, out_channels, | |||
| base_width=self.base_width, groups=self.groups, use_se=use_se)) | |||
| return nn.SequentialCell(layers) | |||
| def get_out_channels(self): | |||
| return self.out_channels | |||
| def resnext50(): | |||
| return ResNet(Bottleneck, [3, 4, 6, 3], width_per_group=4, groups=32) | |||
| @@ -0,0 +1,45 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """config""" | |||
| from easydict import EasyDict as ed | |||
| config = ed({ | |||
| "image_size": '224,224', | |||
| "num_classes": 1000, | |||
| "lr": 0.4, | |||
| "lr_scheduler": 'cosine_annealing', | |||
| "lr_epochs": '30,60,90,120', | |||
| "lr_gamma": 0.1, | |||
| "eta_min": 0, | |||
| "T_max": 150, | |||
| "max_epoch": 150, | |||
| "backbone": 'resnext50', | |||
| "warmup_epochs": 1, | |||
| "weight_decay": 0.0001, | |||
| "momentum": 0.9, | |||
| "is_dynamic_loss_scale": 0, | |||
| "loss_scale": 1024, | |||
| "label_smooth": 1, | |||
| "label_smooth_factor": 0.1, | |||
| "ckpt_interval": 1250, | |||
| "ckpt_path": 'outputs/', | |||
| "is_save_on_master": 1, | |||
| "rank": 0, | |||
| "group_size": 1 | |||
| }) | |||
| @@ -0,0 +1,41 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| define loss function for network. | |||
| """ | |||
| from mindspore.nn.loss.loss import _Loss | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import functional as F | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| import mindspore.nn as nn | |||
| class CrossEntropy(_Loss): | |||
| """ | |||
| the redefined loss function with SoftmaxCrossEntropyWithLogits. | |||
| """ | |||
| def __init__(self, smooth_factor=0., num_classes=1000): | |||
| super(CrossEntropy, self).__init__() | |||
| self.onehot = P.OneHot() | |||
| self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) | |||
| self.off_value = Tensor(1.0 * smooth_factor / (num_classes -1), mstype.float32) | |||
| self.ce = nn.SoftmaxCrossEntropyWithLogits() | |||
| self.mean = P.ReduceMean(False) | |||
| def construct(self, logit, label): | |||
| one_hot_label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value) | |||
| loss = self.ce(logit, one_hot_label) | |||
| loss = self.mean(loss, 0) | |||
| return loss | |||
| @@ -0,0 +1,155 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| dataset processing. | |||
| """ | |||
| import os | |||
| from mindspore.common import dtype as mstype | |||
| import mindspore.dataset as de | |||
| import mindspore.dataset.transforms.c_transforms as C | |||
| import mindspore.dataset.transforms.vision.c_transforms as V_C | |||
| from PIL import Image, ImageFile | |||
| from src.utils.sampler import DistributedSampler | |||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | |||
| class TxtDataset(): | |||
| """ | |||
| create txt dataset. | |||
| Args: | |||
| Returns: | |||
| de_dataset. | |||
| """ | |||
| def __init__(self, root, txt_name): | |||
| super(TxtDataset, self).__init__() | |||
| self.imgs = [] | |||
| self.labels = [] | |||
| fin = open(txt_name, "r") | |||
| for line in fin: | |||
| img_name, label = line.strip().split(' ') | |||
| self.imgs.append(os.path.join(root, img_name)) | |||
| self.labels.append(int(label)) | |||
| fin.close() | |||
| def __getitem__(self, index): | |||
| img = Image.open(self.imgs[index]).convert('RGB') | |||
| return img, self.labels[index] | |||
| def __len__(self): | |||
| return len(self.imgs) | |||
| def classification_dataset(data_dir, image_size, per_batch_size, max_epoch, rank, group_size, | |||
| mode='train', | |||
| input_mode='folder', | |||
| root='', | |||
| num_parallel_workers=None, | |||
| shuffle=None, | |||
| sampler=None, | |||
| class_indexing=None, | |||
| drop_remainder=True, | |||
| transform=None, | |||
| target_transform=None): | |||
| """ | |||
| A function that returns a dataset for classification. The mode of input dataset could be "folder" or "txt". | |||
| If it is "folder", all images within one folder have the same label. If it is "txt", all paths of images | |||
| are written into a textfile. | |||
| Args: | |||
| data_dir (str): Path to the root directory that contains the dataset for "input_mode="folder"". | |||
| Or path of the textfile that contains every image's path of the dataset. | |||
| image_size (str): Size of the input images. | |||
| per_batch_size (int): the batch size of evey step during training. | |||
| max_epoch (int): the number of epochs. | |||
| rank (int): The shard ID within num_shards (default=None). | |||
| group_size (int): Number of shards that the dataset should be divided | |||
| into (default=None). | |||
| mode (str): "train" or others. Default: " train". | |||
| input_mode (str): The form of the input dataset. "folder" or "txt". Default: "folder". | |||
| root (str): the images path for "input_mode="txt"". Default: " ". | |||
| num_parallel_workers (int): Number of workers to read the data. Default: None. | |||
| shuffle (bool): Whether or not to perform shuffle on the dataset | |||
| (default=None, performs shuffle). | |||
| sampler (Sampler): Object used to choose samples from the dataset. Default: None. | |||
| class_indexing (dict): A str-to-int mapping from folder name to index | |||
| (default=None, the folder names will be sorted | |||
| alphabetically and each class will be given a | |||
| unique index starting from 0). | |||
| Examples: | |||
| >>> from mindvision.common.datasets.classification import classification_dataset | |||
| >>> # path to imagefolder directory. This directory needs to contain sub-directories which contain the images | |||
| >>> dataset_dir = "/path/to/imagefolder_directory" | |||
| >>> de_dataset = classification_dataset(train_data_dir, image_size=[224, 244], | |||
| >>> per_batch_size=64, max_epoch=100, | |||
| >>> rank=0, group_size=4) | |||
| >>> # Path of the textfile that contains every image's path of the dataset. | |||
| >>> dataset_dir = "/path/to/dataset/images/train.txt" | |||
| >>> images_dir = "/path/to/dataset/images" | |||
| >>> de_dataset = classification_dataset(train_data_dir, image_size=[224, 244], | |||
| >>> per_batch_size=64, max_epoch=100, | |||
| >>> rank=0, group_size=4, | |||
| >>> input_mode="txt", root=images_dir) | |||
| """ | |||
| mean = [0.485 * 255, 0.456 * 255, 0.406 * 255] | |||
| std = [0.229 * 255, 0.224 * 255, 0.225 * 255] | |||
| if transform is None: | |||
| if mode == 'train': | |||
| transform_img = [ | |||
| V_C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)), | |||
| V_C.RandomHorizontalFlip(prob=0.5), | |||
| V_C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4), | |||
| V_C.Normalize(mean=mean, std=std), | |||
| V_C.HWC2CHW() | |||
| ] | |||
| else: | |||
| transform_img = [ | |||
| V_C.Decode(), | |||
| V_C.Resize((256, 256)), | |||
| V_C.CenterCrop(image_size), | |||
| V_C.Normalize(mean=mean, std=std), | |||
| V_C.HWC2CHW() | |||
| ] | |||
| else: | |||
| transform_img = transform | |||
| if target_transform is None: | |||
| transform_label = [C.TypeCast(mstype.int32)] | |||
| else: | |||
| transform_label = target_transform | |||
| if input_mode == 'folder': | |||
| de_dataset = de.ImageFolderDatasetV2(data_dir, num_parallel_workers=num_parallel_workers, | |||
| shuffle=shuffle, sampler=sampler, class_indexing=class_indexing, | |||
| num_shards=group_size, shard_id=rank) | |||
| else: | |||
| dataset = TxtDataset(root, data_dir) | |||
| sampler = DistributedSampler(dataset, rank, group_size, shuffle=shuffle) | |||
| de_dataset = de.GeneratorDataset(dataset, ["image", "label"], sampler=sampler) | |||
| de_dataset.set_dataset_size(len(sampler)) | |||
| de_dataset = de_dataset.map(input_columns="image", num_parallel_workers=8, operations=transform_img) | |||
| de_dataset = de_dataset.map(input_columns="label", num_parallel_workers=8, operations=transform_label) | |||
| columns_to_project = ["image", "label"] | |||
| de_dataset = de_dataset.project(columns=columns_to_project) | |||
| de_dataset = de_dataset.batch(per_batch_size, drop_remainder=drop_remainder) | |||
| de_dataset = de_dataset.repeat(max_epoch) | |||
| return de_dataset | |||
| @@ -0,0 +1,42 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| common architecture. | |||
| """ | |||
| import mindspore.nn as nn | |||
| from src.utils.cunstom_op import GlobalAvgPooling | |||
| __all__ = ['CommonHead'] | |||
| class CommonHead(nn.Cell): | |||
| """ | |||
| commom architecture definition. | |||
| Args: | |||
| num_classes (int): Number of classes. | |||
| out_channels (int): Output channels. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| """ | |||
| def __init__(self, num_classes, out_channels): | |||
| super(CommonHead, self).__init__() | |||
| self.avgpool = GlobalAvgPooling() | |||
| self.fc = nn.Dense(out_channels, num_classes, has_bias=True).add_flags_recursive(fp16=True) | |||
| def construct(self, x): | |||
| x = self.avgpool(x) | |||
| x = self.fc(x) | |||
| return x | |||
| @@ -0,0 +1,85 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Image classifiation. | |||
| """ | |||
| import math | |||
| import mindspore.nn as nn | |||
| from mindspore.common import initializer as init | |||
| import src.backbone as backbones | |||
| import src.head as heads | |||
| from src.utils.var_init import default_recurisive_init, KaimingNormal | |||
| class ImageClassificationNetwork(nn.Cell): | |||
| """ | |||
| architecture of image classification network. | |||
| Args: | |||
| Returns: | |||
| Tensor, output tensor. | |||
| """ | |||
| def __init__(self, backbone, head): | |||
| super(ImageClassificationNetwork, self).__init__() | |||
| self.backbone = backbone | |||
| self.head = head | |||
| def construct(self, x): | |||
| x = self.backbone(x) | |||
| x = self.head(x) | |||
| return x | |||
| class Resnet(ImageClassificationNetwork): | |||
| """ | |||
| Resnet architecture. | |||
| Args: | |||
| backbone_name (string): backbone. | |||
| num_classes (int): number of classes. | |||
| Returns: | |||
| Resnet. | |||
| """ | |||
| def __init__(self, backbone_name, num_classes): | |||
| self.backbone_name = backbone_name | |||
| backbone = backbones.__dict__[self.backbone_name]() | |||
| out_channels = backbone.get_out_channels() | |||
| head = heads.CommonHead(num_classes=num_classes, out_channels=out_channels) | |||
| super(Resnet, self).__init__(backbone, head) | |||
| default_recurisive_init(self) | |||
| for cell in self.cells_and_names(): | |||
| if isinstance(cell, nn.Conv2d): | |||
| cell.weight.default_input = init.initializer( | |||
| KaimingNormal(a=math.sqrt(5), mode='fan_out', nonlinearity='relu'), | |||
| cell.weight.default_input.shape, cell.weight.default_input.dtype).to_tensor() | |||
| elif isinstance(cell, nn.BatchNorm2d): | |||
| cell.gamma.default_input = init.initializer('ones', cell.gamma.default_input.shape).to_tensor() | |||
| cell.beta.default_input = init.initializer('zeros', cell.beta.default_input.shape).to_tensor() | |||
| # Zero-initialize the last BN in each residual branch, | |||
| # so that the residual branch starts with zeros, and each residual block behaves like an identity. | |||
| # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |||
| for cell in self.cells_and_names(): | |||
| if isinstance(cell, backbones.resnet.Bottleneck): | |||
| cell.bn3.gamma.default_input = init.initializer('zeros', cell.bn3.gamma.default_input.shape).to_tensor() | |||
| elif isinstance(cell, backbones.resnet.BasicBlock): | |||
| cell.bn2.gamma.default_input = init.initializer('zeros', cell.bn2.gamma.default_input.shape).to_tensor() | |||
| def get_network(backbone_name, num_classes): | |||
| if backbone_name in ['resnext50']: | |||
| return Resnet(backbone_name, num_classes) | |||
| return None | |||
| @@ -0,0 +1,21 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| linear warm up learning rate. | |||
| """ | |||
| def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr): | |||
| lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps) | |||
| lr = float(init_lr) + lr_inc * current_step | |||
| return lr | |||
| @@ -0,0 +1,108 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network operations | |||
| """ | |||
| import mindspore.nn as nn | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common import dtype as mstype | |||
| class GlobalAvgPooling(nn.Cell): | |||
| """ | |||
| global average pooling feature map. | |||
| Args: | |||
| mean (tuple): means for each channel. | |||
| """ | |||
| def __init__(self): | |||
| super(GlobalAvgPooling, self).__init__() | |||
| self.mean = P.ReduceMean(True) | |||
| self.shape = P.Shape() | |||
| self.reshape = P.Reshape() | |||
| def construct(self, x): | |||
| x = self.mean(x, (2, 3)) | |||
| b, c, _, _ = self.shape(x) | |||
| x = self.reshape(x, (b, c)) | |||
| return x | |||
| class SEBlock(nn.Cell): | |||
| """ | |||
| squeeze and excitation block. | |||
| Args: | |||
| channel (int): number of feature maps. | |||
| reduction (int): weight. | |||
| """ | |||
| def __init__(self, channel, reduction=16): | |||
| super(SEBlock, self).__init__() | |||
| self.avg_pool = GlobalAvgPooling() | |||
| self.fc1 = nn.Dense(channel, channel // reduction) | |||
| self.relu = P.ReLU() | |||
| self.fc2 = nn.Dense(channel // reduction, channel) | |||
| self.sigmoid = P.Sigmoid() | |||
| self.reshape = P.Reshape() | |||
| self.shape = P.Shape() | |||
| self.sum = P.Sum() | |||
| self.cast = P.Cast() | |||
| def construct(self, x): | |||
| b, c = self.shape(x) | |||
| y = self.avg_pool(x) | |||
| y = self.reshape(y, (b, c)) | |||
| y = self.fc1(y) | |||
| y = self.relu(y) | |||
| y = self.fc2(y) | |||
| y = self.sigmoid(y) | |||
| y = self.reshape(y, (b, c, 1, 1)) | |||
| return x * y | |||
| class GroupConv(nn.Cell): | |||
| """ | |||
| group convolution operation. | |||
| Args: | |||
| in_channels (int): Input channels of feature map. | |||
| out_channels (int): Output channels of feature map. | |||
| kernel_size (int): Size of convolution kernel. | |||
| stride (int): Stride size for the group convolution layer. | |||
| Returns: | |||
| tensor, output tensor. | |||
| """ | |||
| def __init__(self, in_channels, out_channels, kernel_size, stride, pad_mode="pad", pad=0, groups=1, has_bias=False): | |||
| super(GroupConv, self).__init__() | |||
| assert in_channels % groups == 0 and out_channels % groups == 0 | |||
| self.groups = groups | |||
| self.convs = nn.CellList() | |||
| self.op_split = P.Split(axis=1, output_num=self.groups) | |||
| self.op_concat = P.Concat(axis=1) | |||
| self.cast = P.Cast() | |||
| for _ in range(groups): | |||
| self.convs.append(nn.Conv2d(in_channels//groups, out_channels//groups, | |||
| kernel_size=kernel_size, stride=stride, has_bias=has_bias, | |||
| padding=pad, pad_mode=pad_mode, group=1)) | |||
| def construct(self, x): | |||
| features = self.op_split(x) | |||
| outputs = () | |||
| for i in range(self.groups): | |||
| outputs = outputs + (self.convs[i](self.cast(features[i], mstype.float32)),) | |||
| out = self.op_concat(outputs) | |||
| return out | |||
| @@ -0,0 +1,82 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| get logger. | |||
| """ | |||
| import logging | |||
| import os | |||
| import sys | |||
| from datetime import datetime | |||
| class LOGGER(logging.Logger): | |||
| """ | |||
| set up logging file. | |||
| Args: | |||
| logger_name (string): logger name. | |||
| log_dir (string): path of logger. | |||
| Returns: | |||
| string, logger path | |||
| """ | |||
| def __init__(self, logger_name, rank=0): | |||
| super(LOGGER, self).__init__(logger_name) | |||
| if rank % 8 == 0: | |||
| console = logging.StreamHandler(sys.stdout) | |||
| console.setLevel(logging.INFO) | |||
| formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') | |||
| console.setFormatter(formatter) | |||
| self.addHandler(console) | |||
| def setup_logging_file(self, log_dir, rank=0): | |||
| """set up log file""" | |||
| self.rank = rank | |||
| if not os.path.exists(log_dir): | |||
| os.makedirs(log_dir, exist_ok=True) | |||
| log_name = datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S') + '_rank_{}.log'.format(rank) | |||
| self.log_fn = os.path.join(log_dir, log_name) | |||
| fh = logging.FileHandler(self.log_fn) | |||
| fh.setLevel(logging.INFO) | |||
| formatter = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s') | |||
| fh.setFormatter(formatter) | |||
| self.addHandler(fh) | |||
| def info(self, msg, *args, **kwargs): | |||
| if self.isEnabledFor(logging.INFO): | |||
| self._log(logging.INFO, msg, args, **kwargs) | |||
| def save_args(self, args): | |||
| self.info('Args:') | |||
| args_dict = vars(args) | |||
| for key in args_dict.keys(): | |||
| self.info('--> %s: %s', key, args_dict[key]) | |||
| self.info('') | |||
| def important_info(self, msg, *args, **kwargs): | |||
| if self.isEnabledFor(logging.INFO) and self.rank == 0: | |||
| line_width = 2 | |||
| important_msg = '\n' | |||
| important_msg += ('*'*70 + '\n')*line_width | |||
| important_msg += ('*'*line_width + '\n')*2 | |||
| important_msg += '*'*line_width + ' '*8 + msg + '\n' | |||
| important_msg += ('*'*line_width + '\n')*2 | |||
| important_msg += ('*'*70 + '\n')*line_width | |||
| self.info(important_msg, *args, **kwargs) | |||
| def get_logger(path, rank): | |||
| logger = LOGGER("mindversion", rank) | |||
| logger.setup_logging_file(path, rank) | |||
| return logger | |||
| @@ -0,0 +1,39 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| optimizer parameters. | |||
| """ | |||
| def get_param_groups(network): | |||
| """get param groups""" | |||
| decay_params = [] | |||
| no_decay_params = [] | |||
| for x in network.trainable_params(): | |||
| parameter_name = x.name | |||
| if parameter_name.endswith('.bias'): | |||
| # all bias not using weight decay | |||
| # print('no decay:{}'.format(parameter_name)) | |||
| no_decay_params.append(x) | |||
| elif parameter_name.endswith('.gamma'): | |||
| # bn weight bias not using weight decay, be carefully for now x not include BN | |||
| # print('no decay:{}'.format(parameter_name)) | |||
| no_decay_params.append(x) | |||
| elif parameter_name.endswith('.beta'): | |||
| # bn weight bias not using weight decay, be carefully for now x not include BN | |||
| # print('no decay:{}'.format(parameter_name)) | |||
| no_decay_params.append(x) | |||
| else: | |||
| decay_params.append(x) | |||
| return [{'params': no_decay_params, 'weight_decay': 0.0}, {'params': decay_params}] | |||
| @@ -0,0 +1,53 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| choose samples from the dataset | |||
| """ | |||
| import math | |||
| import numpy as np | |||
| class DistributedSampler(): | |||
| """ | |||
| sampling the dataset. | |||
| Args: | |||
| Returns: | |||
| num_samples, number of samples. | |||
| """ | |||
| def __init__(self, dataset, rank, group_size, shuffle=True, seed=0): | |||
| self.dataset = dataset | |||
| self.rank = rank | |||
| self.group_size = group_size | |||
| self.dataset_length = len(self.dataset) | |||
| self.num_samples = int(math.ceil(self.dataset_length * 1.0 / self.group_size)) | |||
| self.total_size = self.num_samples * self.group_size | |||
| self.shuffle = shuffle | |||
| self.seed = seed | |||
| def __iter__(self): | |||
| if self.shuffle: | |||
| self.seed = (self.seed + 1) & 0xffffffff | |||
| np.random.seed(self.seed) | |||
| indices = np.random.permutation(self.dataset_length).tolist() | |||
| else: | |||
| indices = list(range(len(self.dataset_length))) | |||
| indices += indices[:(self.total_size - len(indices))] | |||
| indices = indices[self.rank::self.group_size] | |||
| return iter(indices) | |||
| def __len__(self): | |||
| return self.num_samples | |||
| @@ -0,0 +1,213 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| Initialize. | |||
| """ | |||
| import math | |||
| from functools import reduce | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import initializer as init | |||
| def _calculate_gain(nonlinearity, param=None): | |||
| r""" | |||
| Return the recommended gain value for the given nonlinearity function. | |||
| The values are as follows: | |||
| ================= ==================================================== | |||
| nonlinearity gain | |||
| ================= ==================================================== | |||
| Linear / Identity :math:`1` | |||
| Conv{1,2,3}D :math:`1` | |||
| Sigmoid :math:`1` | |||
| Tanh :math:`\frac{5}{3}` | |||
| ReLU :math:`\sqrt{2}` | |||
| Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}` | |||
| ================= ==================================================== | |||
| Args: | |||
| nonlinearity: the non-linear function | |||
| param: optional parameter for the non-linear function | |||
| Examples: | |||
| >>> gain = calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2 | |||
| """ | |||
| linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d'] | |||
| if nonlinearity in linear_fns or nonlinearity == 'sigmoid': | |||
| return 1 | |||
| if nonlinearity == 'tanh': | |||
| return 5.0 / 3 | |||
| if nonlinearity == 'relu': | |||
| return math.sqrt(2.0) | |||
| if nonlinearity == 'leaky_relu': | |||
| if param is None: | |||
| negative_slope = 0.01 | |||
| elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float): | |||
| negative_slope = param | |||
| else: | |||
| raise ValueError("negative_slope {} not a valid number".format(param)) | |||
| return math.sqrt(2.0 / (1 + negative_slope ** 2)) | |||
| raise ValueError("Unsupported nonlinearity {}".format(nonlinearity)) | |||
| def _assignment(arr, num): | |||
| """Assign the value of `num` to `arr`.""" | |||
| if arr.shape == (): | |||
| arr = arr.reshape((1)) | |||
| arr[:] = num | |||
| arr = arr.reshape(()) | |||
| else: | |||
| if isinstance(num, np.ndarray): | |||
| arr[:] = num[:] | |||
| else: | |||
| arr[:] = num | |||
| return arr | |||
| def _calculate_in_and_out(arr): | |||
| """ | |||
| Calculate n_in and n_out. | |||
| Args: | |||
| arr (Array): Input array. | |||
| Returns: | |||
| Tuple, a tuple with two elements, the first element is `n_in` and the second element is `n_out`. | |||
| """ | |||
| dim = len(arr.shape) | |||
| if dim < 2: | |||
| raise ValueError("If initialize data with xavier uniform, the dimension of data must greater than 1.") | |||
| n_in = arr.shape[1] | |||
| n_out = arr.shape[0] | |||
| if dim > 2: | |||
| counter = reduce(lambda x, y: x * y, arr.shape[2:]) | |||
| n_in *= counter | |||
| n_out *= counter | |||
| return n_in, n_out | |||
| def _select_fan(array, mode): | |||
| mode = mode.lower() | |||
| valid_modes = ['fan_in', 'fan_out'] | |||
| if mode not in valid_modes: | |||
| raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes)) | |||
| fan_in, fan_out = _calculate_in_and_out(array) | |||
| return fan_in if mode == 'fan_in' else fan_out | |||
| class KaimingInit(init.Initializer): | |||
| r""" | |||
| Base Class. Initialize the array with He kaiming algorithm. | |||
| Args: | |||
| a: the negative slope of the rectifier used after this layer (only | |||
| used with ``'leaky_relu'``) | |||
| mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` | |||
| preserves the magnitude of the variance of the weights in the | |||
| forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the | |||
| backwards pass. | |||
| nonlinearity: the non-linear function, recommended to use only with | |||
| ``'relu'`` or ``'leaky_relu'`` (default). | |||
| """ | |||
| def __init__(self, a=0, mode='fan_in', nonlinearity='leaky_relu'): | |||
| super(KaimingInit, self).__init__() | |||
| self.mode = mode | |||
| self.gain = _calculate_gain(nonlinearity, a) | |||
| def _initialize(self, arr): | |||
| pass | |||
| class KaimingUniform(KaimingInit): | |||
| r""" | |||
| Initialize the array with He kaiming uniform algorithm. The resulting tensor will | |||
| have values sampled from :math:`\mathcal{U}(-\text{bound}, \text{bound})` where | |||
| .. math:: | |||
| \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} | |||
| Input: | |||
| arr (Array): The array to be assigned. | |||
| Returns: | |||
| Array, assigned array. | |||
| Examples: | |||
| >>> w = np.empty(3, 5) | |||
| >>> KaimingUniform(w, mode='fan_in', nonlinearity='relu') | |||
| """ | |||
| def _initialize(self, arr): | |||
| fan = _select_fan(arr, self.mode) | |||
| bound = math.sqrt(3.0) * self.gain / math.sqrt(fan) | |||
| np.random.seed(0) | |||
| data = np.random.uniform(-bound, bound, arr.shape) | |||
| _assignment(arr, data) | |||
| class KaimingNormal(KaimingInit): | |||
| r""" | |||
| Initialize the array with He kaiming normal algorithm. The resulting tensor will | |||
| have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where | |||
| .. math:: | |||
| \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}} | |||
| Input: | |||
| arr (Array): The array to be assigned. | |||
| Returns: | |||
| Array, assigned array. | |||
| Examples: | |||
| >>> w = np.empty(3, 5) | |||
| >>> KaimingNormal(w, mode='fan_out', nonlinearity='relu') | |||
| """ | |||
| def _initialize(self, arr): | |||
| fan = _select_fan(arr, self.mode) | |||
| std = self.gain / math.sqrt(fan) | |||
| np.random.seed(0) | |||
| data = np.random.normal(0, std, arr.shape) | |||
| _assignment(arr, data) | |||
| def default_recurisive_init(custom_cell): | |||
| """default_recurisive_init""" | |||
| for _, cell in custom_cell.cells_and_names(): | |||
| if isinstance(cell, nn.Conv2d): | |||
| cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)), | |||
| cell.weight.default_input.shape, | |||
| cell.weight.default_input.dtype).to_tensor() | |||
| if cell.bias is not None: | |||
| fan_in, _ = _calculate_in_and_out(cell.weight.default_input.asnumpy()) | |||
| bound = 1 / math.sqrt(fan_in) | |||
| np.random.seed(0) | |||
| cell.bias.default_input = Tensor(np.random.uniform(-bound, bound, cell.bias.default_input.shape), | |||
| cell.bias.default_input.dtype) | |||
| elif isinstance(cell, nn.Dense): | |||
| cell.weight.default_input = init.initializer(KaimingUniform(a=math.sqrt(5)), | |||
| cell.weight.default_input.shape, | |||
| cell.weight.default_input.dtype).to_tensor() | |||
| if cell.bias is not None: | |||
| fan_in, _ = _calculate_in_and_out(cell.weight.default_input.asnumpy()) | |||
| bound = 1 / math.sqrt(fan_in) | |||
| np.random.seed(0) | |||
| cell.bias.default_input = Tensor(np.random.uniform(-bound, bound, cell.bias.default_input.shape), | |||
| cell.bias.default_input.dtype) | |||
| elif isinstance(cell, (nn.BatchNorm2d, nn.BatchNorm1d)): | |||
| pass | |||
| @@ -0,0 +1,40 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| warm up cosine annealing learning rate. | |||
| """ | |||
| import math | |||
| import numpy as np | |||
| from .linear_warmup import linear_warmup_lr | |||
| def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0): | |||
| """warm up cosine annealing learning rate.""" | |||
| base_lr = lr | |||
| warmup_init_lr = 0 | |||
| total_steps = int(max_epoch * steps_per_epoch) | |||
| warmup_steps = int(warmup_epochs * steps_per_epoch) | |||
| lr_each_step = [] | |||
| for i in range(total_steps): | |||
| last_epoch = i // steps_per_epoch | |||
| if i < warmup_steps: | |||
| lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) | |||
| else: | |||
| lr = eta_min + (base_lr - eta_min) * (1. + math.cos(math.pi*last_epoch / T_max)) / 2 | |||
| lr_each_step.append(lr) | |||
| return np.array(lr_each_step).astype(np.float32) | |||
| @@ -0,0 +1,56 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| warm up step learning rate. | |||
| """ | |||
| from collections import Counter | |||
| import numpy as np | |||
| from .linear_warmup import linear_warmup_lr | |||
| def warmup_step_lr(lr, lr_epochs, steps_per_epoch, warmup_epochs, max_epoch, gamma=0.1): | |||
| """warmup_step_lr""" | |||
| base_lr = lr | |||
| warmup_init_lr = 0 | |||
| total_steps = int(max_epoch * steps_per_epoch) | |||
| warmup_steps = int(warmup_epochs * steps_per_epoch) | |||
| milestones = lr_epochs | |||
| milestones_steps = [] | |||
| for milestone in milestones: | |||
| milestones_step = milestone * steps_per_epoch | |||
| milestones_steps.append(milestones_step) | |||
| lr_each_step = [] | |||
| lr = base_lr | |||
| milestones_steps_counter = Counter(milestones_steps) | |||
| for i in range(total_steps): | |||
| if i < warmup_steps: | |||
| lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr) | |||
| else: | |||
| lr = lr * gamma**milestones_steps_counter[i] | |||
| lr_each_step.append(lr) | |||
| return np.array(lr_each_step).astype(np.float32) | |||
| def multi_step_lr(lr, milestones, steps_per_epoch, max_epoch, gamma=0.1): | |||
| return warmup_step_lr(lr, milestones, steps_per_epoch, 0, max_epoch, gamma=gamma) | |||
| def step_lr(lr, epoch_size, steps_per_epoch, max_epoch, gamma=0.1): | |||
| lr_epochs = [] | |||
| for i in range(1, max_epoch): | |||
| if i % epoch_size == 0: | |||
| lr_epochs.append(i) | |||
| return multi_step_lr(lr, lr_epochs, steps_per_epoch, max_epoch, gamma=gamma) | |||
| @@ -0,0 +1,289 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train ImageNet.""" | |||
| import os | |||
| import time | |||
| import argparse | |||
| import datetime | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor, context | |||
| from mindspore import ParallelMode | |||
| from mindspore.nn.optim import Momentum | |||
| from mindspore.communication.management import init, get_rank, get_group_size | |||
| from mindspore.train.callback import ModelCheckpoint | |||
| from mindspore.train.callback import CheckpointConfig, Callback | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.train.model import Model | |||
| from mindspore.train.loss_scale_manager import DynamicLossScaleManager, FixedLossScaleManager | |||
| from src.dataset import classification_dataset | |||
| from src.crossentropy import CrossEntropy | |||
| from src.warmup_step_lr import warmup_step_lr | |||
| from src.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr | |||
| from src.utils.logging import get_logger | |||
| from src.utils.optimizers__init__ import get_param_groups | |||
| from src.image_classification import get_network | |||
| from src.config import config | |||
| devid = int(os.getenv('DEVICE_ID')) | |||
| context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, | |||
| device_target="Ascend", save_graphs=False, device_id=devid) | |||
| class BuildTrainNetwork(nn.Cell): | |||
| """build training network""" | |||
| def __init__(self, network, criterion): | |||
| super(BuildTrainNetwork, self).__init__() | |||
| self.network = network | |||
| self.criterion = criterion | |||
| def construct(self, input_data, label): | |||
| output = self.network(input_data) | |||
| loss = self.criterion(output, label) | |||
| return loss | |||
| class ProgressMonitor(Callback): | |||
| """monitor loss and time""" | |||
| def __init__(self, args): | |||
| super(ProgressMonitor, self).__init__() | |||
| self.me_epoch_start_time = 0 | |||
| self.me_epoch_start_step_num = 0 | |||
| self.args = args | |||
| self.ckpt_history = [] | |||
| def begin(self, run_context): | |||
| self.args.logger.info('start network train...') | |||
| def epoch_begin(self, run_context): | |||
| pass | |||
| def epoch_end(self, run_context, *me_args): | |||
| cb_params = run_context.original_args() | |||
| me_step = cb_params.cur_step_num - 1 | |||
| real_epoch = me_step // self.args.steps_per_epoch | |||
| time_used = time.time() - self.me_epoch_start_time | |||
| fps_mean = self.args.per_batch_size * (me_step-self.me_epoch_start_step_num) * self.args.group_size / time_used | |||
| self.args.logger.info('epoch[{}], iter[{}], loss:{}, mean_fps:{:.2f}' | |||
| 'imgs/sec'.format(real_epoch, me_step, cb_params.net_outputs, fps_mean)) | |||
| if self.args.rank_save_ckpt_flag: | |||
| import glob | |||
| ckpts = glob.glob(os.path.join(self.args.outputs_dir, '*.ckpt')) | |||
| for ckpt in ckpts: | |||
| ckpt_fn = os.path.basename(ckpt) | |||
| if not ckpt_fn.startswith('{}-'.format(self.args.rank)): | |||
| continue | |||
| if ckpt in self.ckpt_history: | |||
| continue | |||
| self.ckpt_history.append(ckpt) | |||
| self.args.logger.info('epoch[{}], iter[{}], loss:{}, ckpt:{},' | |||
| 'ckpt_fn:{}'.format(real_epoch, me_step, cb_params.net_outputs, ckpt, ckpt_fn)) | |||
| self.me_epoch_start_step_num = me_step | |||
| self.me_epoch_start_time = time.time() | |||
| def step_begin(self, run_context): | |||
| pass | |||
| def step_end(self, run_context, *me_args): | |||
| pass | |||
| def end(self, run_context): | |||
| self.args.logger.info('end network train...') | |||
| def parse_args(cloud_args=None): | |||
| """parameters""" | |||
| parser = argparse.ArgumentParser('mindspore classification training') | |||
| # dataset related | |||
| parser.add_argument('--data_dir', type=str, default='', help='train data dir') | |||
| parser.add_argument('--per_batch_size', default=128, type=int, help='batch size for per gpu') | |||
| # network related | |||
| parser.add_argument('--pretrained', default='', type=str, help='model_path, local pretrained model to load') | |||
| # distributed related | |||
| parser.add_argument('--is_distributed', type=int, default=1, help='if multi device') | |||
| # roma obs | |||
| parser.add_argument('--train_url', type=str, default="", help='train url') | |||
| args, _ = parser.parse_known_args() | |||
| args = merge_args(args, cloud_args) | |||
| args.image_size = config.image_size | |||
| args.num_classes = config.num_classes | |||
| args.lr = config.lr | |||
| args.lr_scheduler = config.lr_scheduler | |||
| args.lr_epochs = config.lr_epochs | |||
| args.lr_gamma = config.lr_gamma | |||
| args.eta_min = config.eta_min | |||
| args.T_max = config.T_max | |||
| args.max_epoch = config.max_epoch | |||
| args.backbone = config.backbone | |||
| args.warmup_epochs = config.warmup_epochs | |||
| args.weight_decay = config.weight_decay | |||
| args.momentum = config.momentum | |||
| args.is_dynamic_loss_scale = config.is_dynamic_loss_scale | |||
| args.loss_scale = config.loss_scale | |||
| args.label_smooth = config.label_smooth | |||
| args.label_smooth_factor = config.label_smooth_factor | |||
| args.ckpt_interval = config.ckpt_interval | |||
| args.ckpt_path = config.ckpt_path | |||
| args.is_save_on_master = config.is_save_on_master | |||
| args.rank = config.rank | |||
| args.group_size = config.group_size | |||
| args.lr_epochs = list(map(int, args.lr_epochs.split(','))) | |||
| args.image_size = list(map(int, args.image_size.split(','))) | |||
| return args | |||
| def merge_args(args, cloud_args): | |||
| """dictionary""" | |||
| args_dict = vars(args) | |||
| if isinstance(cloud_args, dict): | |||
| for key in cloud_args.keys(): | |||
| val = cloud_args[key] | |||
| if key in args_dict and val: | |||
| arg_type = type(args_dict[key]) | |||
| if arg_type is not type(None): | |||
| val = arg_type(val) | |||
| args_dict[key] = val | |||
| return args | |||
| def train(cloud_args=None): | |||
| """training process""" | |||
| args = parse_args(cloud_args) | |||
| # init distributed | |||
| if args.is_distributed: | |||
| init() | |||
| args.rank = get_rank() | |||
| args.group_size = get_group_size() | |||
| if args.is_dynamic_loss_scale == 1: | |||
| args.loss_scale = 1 # for dynamic loss scale can not set loss scale in momentum opt | |||
| # select for master rank save ckpt or all rank save, compatiable for model parallel | |||
| args.rank_save_ckpt_flag = 0 | |||
| if args.is_save_on_master: | |||
| if args.rank == 0: | |||
| args.rank_save_ckpt_flag = 1 | |||
| else: | |||
| args.rank_save_ckpt_flag = 1 | |||
| # logger | |||
| args.outputs_dir = os.path.join(args.ckpt_path, | |||
| datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S')) | |||
| args.logger = get_logger(args.outputs_dir, args.rank) | |||
| # dataloader | |||
| de_dataset = classification_dataset(args.data_dir, args.image_size, | |||
| args.per_batch_size, args.max_epoch, | |||
| args.rank, args.group_size) | |||
| de_dataset.map_model = 4 # !!!important | |||
| args.steps_per_epoch = de_dataset.get_dataset_size() | |||
| args.logger.save_args(args) | |||
| # network | |||
| args.logger.important_info('start create network') | |||
| # get network and init | |||
| network = get_network(args.backbone, args.num_classes) | |||
| if network is None: | |||
| raise NotImplementedError('not implement {}'.format(args.backbone)) | |||
| network.add_flags_recursive(fp16=True) | |||
| # loss | |||
| if not args.label_smooth: | |||
| args.label_smooth_factor = 0.0 | |||
| criterion = CrossEntropy(smooth_factor=args.label_smooth_factor, | |||
| num_classes=args.num_classes) | |||
| # load pretrain model | |||
| if os.path.isfile(args.pretrained): | |||
| param_dict = load_checkpoint(args.pretrained) | |||
| param_dict_new = {} | |||
| for key, values in param_dict.items(): | |||
| if key.startswith('moments.'): | |||
| continue | |||
| elif key.startswith('network.'): | |||
| param_dict_new[key[8:]] = values | |||
| else: | |||
| param_dict_new[key] = values | |||
| load_param_into_net(network, param_dict_new) | |||
| args.logger.info('load model {} success'.format(args.pretrained)) | |||
| # lr scheduler | |||
| if args.lr_scheduler == 'exponential': | |||
| lr = warmup_step_lr(args.lr, | |||
| args.lr_epochs, | |||
| args.steps_per_epoch, | |||
| args.warmup_epochs, | |||
| args.max_epoch, | |||
| gamma=args.lr_gamma, | |||
| ) | |||
| elif args.lr_scheduler == 'cosine_annealing': | |||
| lr = warmup_cosine_annealing_lr(args.lr, | |||
| args.steps_per_epoch, | |||
| args.warmup_epochs, | |||
| args.max_epoch, | |||
| args.T_max, | |||
| args.eta_min) | |||
| else: | |||
| raise NotImplementedError(args.lr_scheduler) | |||
| # optimizer | |||
| opt = Momentum(params=get_param_groups(network), | |||
| learning_rate=Tensor(lr), | |||
| momentum=args.momentum, | |||
| weight_decay=args.weight_decay, | |||
| loss_scale=args.loss_scale) | |||
| criterion.add_flags_recursive(fp32=True) | |||
| # package training process, adjust lr + forward + backward + optimizer | |||
| train_net = BuildTrainNetwork(network, criterion) | |||
| if args.is_distributed: | |||
| parallel_mode = ParallelMode.DATA_PARALLEL | |||
| else: | |||
| parallel_mode = ParallelMode.STAND_ALONE | |||
| if args.is_dynamic_loss_scale == 1: | |||
| loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000) | |||
| else: | |||
| loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False) | |||
| # Model api changed since TR5_branch 2020/03/09 | |||
| context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size, | |||
| parameter_broadcast=True, mirror_mean=True) | |||
| model = Model(train_net, optimizer=opt, metrics=None, loss_scale_manager=loss_scale_manager) | |||
| # checkpoint save | |||
| progress_cb = ProgressMonitor(args) | |||
| callbacks = [progress_cb,] | |||
| if args.rank_save_ckpt_flag: | |||
| ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval | |||
| ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval, | |||
| keep_checkpoint_max=ckpt_max_num) | |||
| ckpt_cb = ModelCheckpoint(config=ckpt_config, | |||
| directory=args.outputs_dir, | |||
| prefix='{}'.format(args.rank)) | |||
| callbacks.append(ckpt_cb) | |||
| model.train(args.max_epoch, de_dataset, callbacks=callbacks, dataset_sink_mode=True) | |||
| if __name__ == "__main__": | |||
| train() | |||