@@ -90,31 +90,34 @@ sh scripts/run_eval_ascend.sh
```path
└── PSENet
├── README.md // descriptions about PSENet
├── export.py // export mindir file
├── __init__.py
├── mindspore_hub_conf.py // hub config file
├── README_CN.md // descriptions about PSENet in Chinese
├── README.md // descriptions about PSENet in English
├── scripts
├── run_distribute_train.sh // shell script for distributed
└── run_eval_ascend.sh // shell script for evaluation
├──src
├── __init__.py
├── src
├── config.py // parameter configuration
├── dataset.py // creating dataset
├── ETSNET
├── __init__.py
├── base.py // convolution and BN operator
├── dice_loss.py // calculate PSENet loss value
├── etsnet.py // Subnet in PSENet
├── fpn.py // Subnet in PSENet
├── resnet50.py // Subnet in PSENet
├── pse // Subnet in PSENet
├── etsnet.py // Subnet in PSENet
├── fpn.py // Subnet in PSENet
├── __init__.py
├── pse // Subnet in PSENet
├── __init__.py
├── adaptor.cpp
├── adaptor.h
├── Makefile
├──config.py // parameter configuration
├──dataset.py // creating dataset
├──network_define.py // learning ratio generation
├──export.py // export mindir file
├──mindspore_hub_conf.py // hub config file
├──test.py // test script
├──train.py // training script
├── resnet50.py // Subnet in PSENet
├── __init__.py
├── lr_schedule.py // define learning rate
├── network_define.py // learning ratio generation
├── test.py // test script
├── train.py // training script
```
@@ -164,7 +167,9 @@ python test.py --ckpt=./device*/ckpt*/ETSNet-*.ckpt
#### Usage
step 1: download eval method from [here](https://rrc.cvc.uab.es/?ch=4&com=tasks#TextLocalization).
step 2: click "My Methods" button,then download Evaluation Scripts.
step 3: it is recommended to symlink the eval method root to $MINDSPORE/model_zoo/psenet/eval_ic15/. if your folder structure is different,you may need to change the corresponding paths in eval script files.
```shell
@@ -181,12 +186,12 @@ Calculated!{"precision": 0.814796668299853, "recall": 0.8006740491092923, "hmean
### Evaluation Performance
| Parameters | PSENet |
| Parameters | Ascend |
| -------------------------- | ----------------------------------------------------------- |
| Model Version | V1 |
| Model Version | PSENet |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 |
| uploaded Date | 09/30/2020 (month/day/year) |
| MindSpore Version | 1.0.0 |
| MindSpore Version | 1.0.0 |
| Dataset | ICDAR2015 |
| Training Parameters | start_lr=0.1; lr_scale=0.1 |
| Optimizer | SGD |
@@ -194,19 +199,19 @@ Calculated!{"precision": 0.814796668299853, "recall": 0.8006740491092923, "hmean
| outputs | probability |
| Loss | 0.35 |
| Speed | 1pc: 444 ms/step; 8pcs: 446 ms/step |
| Total time | 1pc: 75.48 h; 8pcs: 10.0 1 h |
| Total time | 1pc: 75.48 h; 8pcs: 7. 11 h |
| Parameters (M) | 27.36 |
| Checkpoint for Fine tuning | 109.44M (.ckpt file) |
| Scripts | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/psenet> |
### Inference Performance
| Parameters | PSENet |
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | V1 |
| Model Version | PSENet |
| Resource | Ascend 910 |
| Uploaded Date | 09/30/2020 (month/day/year) |
| MindSpore Version | 1.0, 0 |
| MindSpore Version | 1.0. 0 |
| Dataset | ICDAR2015 |
| outputs | probability |
| Accuracy | 1pc: 81%; 8pcs: 81% |