|
|
|
@@ -70,3 +70,275 @@ def test_cast1(): |
|
|
|
assert type0 == 'float32' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float32' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast2(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16)) |
|
|
|
t0 = mstype.int32 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16)) |
|
|
|
t1 = mstype.float64 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int32' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float64' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast3(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16)) |
|
|
|
t0 = mstype.int32 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32)) |
|
|
|
t1 = mstype.int32 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int32' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'int32' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast4(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32)) |
|
|
|
t0 = mstype.float16 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32)) |
|
|
|
t1 = mstype.int8 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'float16' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'int8' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast5(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32)) |
|
|
|
t0 = mstype.uint8 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32)) |
|
|
|
t1 = mstype.bool_ |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'uint8' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'bool' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast6(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8)) |
|
|
|
t0 = mstype.float64 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8)) |
|
|
|
t1 = mstype.float32 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'float64' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float32' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast7(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8)) |
|
|
|
t0 = mstype.float32 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8)) |
|
|
|
t1 = mstype.float16 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'float32' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float16' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast8(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8)) |
|
|
|
t0 = mstype.int32 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8)) |
|
|
|
t1 = mstype.int16 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int32' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'int16' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast9(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8)) |
|
|
|
t0 = mstype.int64 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool)) |
|
|
|
t1 = mstype.float16 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int64' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float16' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast10(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool)) |
|
|
|
t0 = mstype.int8 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool)) |
|
|
|
t1 = mstype.float64 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int8' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float64' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast11(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool)) |
|
|
|
t0 = mstype.int16 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool)) |
|
|
|
t1 = mstype.int32 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int16' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'int32' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast12(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool)) |
|
|
|
t0 = mstype.int64 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8)) |
|
|
|
t1 = mstype.float32 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int64' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float32' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast13(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8)) |
|
|
|
t0 = mstype.int32 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8)) |
|
|
|
t1 = mstype.float16 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'int32' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float16' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast14(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16)) |
|
|
|
t0 = mstype.float64 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16)) |
|
|
|
t1 = mstype.float32 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'float64' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float32' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast15(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16)) |
|
|
|
t0 = mstype.float16 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16)) |
|
|
|
t1 = mstype.int32 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'float16' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'int32' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast16(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16)) |
|
|
|
t0 = mstype.float16 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64)) |
|
|
|
t1 = mstype.float64 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'float16' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float64' |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_cast17(): |
|
|
|
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16)) |
|
|
|
t0 = mstype.float32 |
|
|
|
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16)) |
|
|
|
t1 = mstype.float16 |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU') |
|
|
|
net = Net(t0, t1) |
|
|
|
output = net(x0, x1) |
|
|
|
type0 = output[0].asnumpy().dtype |
|
|
|
assert type0 == 'float32' |
|
|
|
type1 = output[1].asnumpy().dtype |
|
|
|
assert type1 == 'float16' |