Add select ops for cpu Add select ops for cpu Add select ops for cpu -- remove useless methods Add select ops for cpu -- remove useless methods Add select ops for cpu -- remove useless methodstags/v1.1.0
| @@ -0,0 +1,53 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/select_cpu_kernel.h" | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| void SelectCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 3) { | |||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but SelectCpuKernel needs 3 input."; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but SelectCpuKernel needs 1 output."; | |||
| } | |||
| auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t x : shape) { | |||
| element_num_ *= x; | |||
| } | |||
| return; | |||
| } | |||
| template <typename T> | |||
| bool SelectCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| auto input_cond = reinterpret_cast<bool *>(inputs[0]->addr); | |||
| auto input_x = reinterpret_cast<T *>(inputs[1]->addr); | |||
| auto input_y = reinterpret_cast<T *>(inputs[2]->addr); | |||
| auto output = reinterpret_cast<T *>(outputs[0]->addr); | |||
| for (size_t pos = 0; pos < element_num_; pos++) { | |||
| output[pos] = input_cond[pos] ? input_x[pos] : input_y[pos]; | |||
| } | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,66 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SELECT_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SELECT_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class SelectCPUKernel : public CPUKernel { | |||
| public: | |||
| SelectCPUKernel() = default; | |||
| ~SelectCPUKernel() override = default; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| private: | |||
| size_t element_num_{1}; | |||
| }; | |||
| MS_REG_CPU_KERNEL_T(Select, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeBool) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SelectCPUKernel, float); | |||
| MS_REG_CPU_KERNEL_T(Select, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeBool) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddInputAttr(kNumberTypeFloat16) | |||
| .AddOutputAttr(kNumberTypeFloat16), | |||
| SelectCPUKernel, float16); | |||
| MS_REG_CPU_KERNEL_T(Select, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeBool) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeInt32), | |||
| SelectCPUKernel, int); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SELECT_CPU_KERNEL_H_ | |||
| @@ -2533,7 +2533,7 @@ class Select(PrimitiveWithInfer): | |||
| Tensor, has the same shape as `input_x`. The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`. | |||
| Supported Platforms: | |||
| ``Ascend`` ``GPU`` | |||
| ``Ascend`` ``GPU`` ``CPU`` | |||
| Examples: | |||
| >>> select = ops.Select() | |||
| @@ -0,0 +1,85 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.select = P.Select() | |||
| def construct(self, cond_op, input_x, input_y): | |||
| return self.select(cond_op, input_x, input_y) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_select_float32(): | |||
| cond = np.array([[True, False], [True, False]]).astype(np.bool) | |||
| x = np.array([[1.2, 1], [1, 0]]).astype(np.float32) | |||
| y = np.array([[1, 2], [3, 4.0]]).astype(np.float32) | |||
| select = Net() | |||
| output = select(Tensor(cond), Tensor(x), Tensor(y)) | |||
| print(output.asnumpy()) | |||
| expect = [[1.2, 2], [1, 4.0]] | |||
| error = np.ones(shape=[2, 2]) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_select_float16(): | |||
| cond = np.array([[True, False], [True, False]]).astype(np.bool) | |||
| x = np.array([[1.2, 1], [1, 0]]).astype(np.float16) | |||
| y = np.array([[1, 2], [3, 4.0]]).astype(np.float16) | |||
| select = Net() | |||
| output = select(Tensor(cond), Tensor(x), Tensor(y)) | |||
| print(output.asnumpy()) | |||
| expect = [[1.2, 2], [1, 4.0]] | |||
| error = np.ones(shape=[2, 2]) * 1.0e-3 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_select_int32(): | |||
| cond = np.array([[True, False], [True, False]]).astype(np.bool) | |||
| x = np.array([[12, 1], [1, 0]]).astype(np.int32) | |||
| y = np.array([[1, 2], [3, 4]]).astype(np.int32) | |||
| select = Net() | |||
| output = select(Tensor(cond), Tensor(x), Tensor(y)) | |||
| print(output.asnumpy()) | |||
| expect = [[12, 2], [1, 4]] | |||
| error = np.ones(shape=[2, 2]) * 1.0e-6 | |||
| diff = output.asnumpy() - expect | |||
| assert np.all(diff < error) | |||
| assert np.all(-diff < error) | |||