Browse Source

!6843 add export.py

Merge pull request !6843 from wukesong/add-export
tags/v1.1.0
mindspore-ci-bot Gitee 5 years ago
parent
commit
ae06c726ca
4 changed files with 106 additions and 0 deletions
  1. +55
    -0
      model_zoo/official/cv/alexnet/export.py
  2. +2
    -0
      model_zoo/official/cv/alexnet/src/config.py
  3. +48
    -0
      model_zoo/official/cv/lenet/export.py
  4. +1
    -0
      model_zoo/official/cv/lenet/src/config.py

+ 55
- 0
model_zoo/official/cv/alexnet/export.py View File

@@ -0,0 +1,55 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
##############export checkpoint file into air and onnx models#################
python export.py
"""
import argparse
import numpy as np

import mindspore as ms
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export

from src.config import alexnet_cifar10_cfg, alexnet_imagenet_cfg
from src.alexnet import AlexNet

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Classification')
parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
help='please choose dataset: imagenet or cifar10.')
parser.add_argument('--device_target', type=str, default="Ascend",
choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
path where the trained ckpt file')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)

if args_opt.dataset_name == 'cifar10':
cfg = alexnet_cifar10_cfg
elif args_opt.dataset_name == 'imagenet':
cfg = alexnet_imagenet_cfg
else:
raise ValueError("dataset is not support.")

net = AlexNet(num_classes=cfg.num_classes)

param_dict = load_checkpoint(args_opt.ckpt_path)
load_param_into_net(net, param_dict)

input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, cfg.image_height, cfg.image_width]), ms.float32)
export(net, input_arr, file_name=cfg.air_name, file_format="AIR")

+ 2
- 0
model_zoo/official/cv/alexnet/src/config.py View File

@@ -29,6 +29,7 @@ alexnet_cifar10_cfg = edict({
'image_width': 227,
'save_checkpoint_steps': 1562,
'keep_checkpoint_max': 10,
'air_name': "alexnet.air",
})

alexnet_imagenet_cfg = edict({
@@ -42,6 +43,7 @@ alexnet_imagenet_cfg = edict({
'image_width': 227,
'save_checkpoint_steps': 625,
'keep_checkpoint_max': 10,
'air_name': "alexnet.air",

# opt
'weight_decay': 0.0001,


+ 48
- 0
model_zoo/official/cv/lenet/export.py View File

@@ -0,0 +1,48 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
export quantization aware training network to infer `AIR` backend.
"""

import argparse
import numpy as np

import mindspore
from mindspore import Tensor
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export

from src.config import mnist_cfg as cfg
from src.lenet import LeNet5

if __name__ == "__main__":
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
parser.add_argument('--device_target', type=str, default="Ascend",
choices=['Ascend', 'GPU'],
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--ckpt_path', type=str, default="",
help='if mode is test, must provide path where the trained ckpt file')
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)

# define fusion network
network = LeNet5(cfg.num_classes)
# load network checkpoint
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)

# export network
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
export(network, inputs, file_name=cfg.air_name, file_format='AIR')

+ 1
- 0
model_zoo/official/cv/lenet/src/config.py View File

@@ -29,4 +29,5 @@ mnist_cfg = edict({
'image_width': 32,
'save_checkpoint_steps': 1875,
'keep_checkpoint_max': 10,
'air_name': "lenet.air",
})

Loading…
Cancel
Save