| @@ -16,13 +16,6 @@ | |||
| #include "roi_align_impl.cuh" | |||
| #include "runtime/device/gpu/cuda_common.h" | |||
| template <typename T> | |||
| inline __device__ T gpu_atomic_add(const T val, T *address); | |||
| template <> | |||
| inline __device__ float gpu_atomic_add(const float val, float *address) { | |||
| return atomicAdd(address, val); | |||
| } | |||
| template <typename T> | |||
| __device__ void bilinear_interpolate(const int height, const int width, T y, T x, int *x_low, int *y_low, int *x_high, | |||
| @@ -201,11 +194,11 @@ __global__ void ROIAlignGradKernel(size_t size, const T *dy, const T *roi_boxes, | |||
| for (int iy = 0; iy < roi_bin_grid_h; iy++) { | |||
| // Shift half point RIGHT for y / x, while previous scaled roi shift half point LEFT | |||
| const T y = | |||
| roi_start_h + ph * bin_size_h + static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); | |||
| const T y = roi_start_h + static_cast<T>(ph) * bin_size_h + | |||
| static_cast<T>(iy + .5f) * bin_size_h / static_cast<T>(roi_bin_grid_h); | |||
| for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |||
| const T x = | |||
| roi_start_w + pw * bin_size_w + static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); | |||
| const T x = roi_start_w + static_cast<T>(pw) * bin_size_w + | |||
| static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w); | |||
| // bilinear interpolate by shifted y / x | |||
| // calculate bilinear interpolation | |||
| int x_low, y_low, x_high, y_high; | |||
| @@ -217,12 +210,28 @@ __global__ void ROIAlignGradKernel(size_t size, const T *dy, const T *roi_boxes, | |||
| T g4 = top_diff_this_bin * w4 / count_points_in_grid_cell; | |||
| if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { | |||
| gpu_atomic_add(static_cast<T>(g1), dx + offset + y_low * width + x_low); | |||
| gpu_atomic_add(static_cast<T>(g2), dx + offset + y_low * width + x_high); | |||
| gpu_atomic_add(static_cast<T>(g3), dx + offset + y_high * width + x_low); | |||
| gpu_atomic_add(static_cast<T>(g4), dx + offset + y_high * width + x_high); | |||
| atomicAdd(dx + offset + y_low * width + x_low, static_cast<T>(g1)); | |||
| atomicAdd(dx + offset + y_low * width + x_high, static_cast<T>(g2)); | |||
| atomicAdd(dx + offset + y_high * width + x_low, static_cast<T>(g3)); | |||
| atomicAdd(dx + offset + y_high * width + x_high, static_cast<T>(g4)); | |||
| } | |||
| } | |||
| } | |||
| } | |||
| } | |||
| template <typename T> | |||
| void ROIAlignGrad(const T *dy, const T *roi_boxes, int roi_rows, int roi_cols, T *dx, const T spatial_scale, | |||
| const int sample_num, int roi_end_mode, const int channels, const int height, const int width, | |||
| const int pooled_height, const int pooled_width, cudaStream_t cuda_stream) { | |||
| size_t size = roi_rows * channels * pooled_height * pooled_width; | |||
| ROIAlignGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>( | |||
| size, dy, roi_boxes, roi_cols, dx, spatial_scale, sample_num, roi_end_mode, channels, height, width, pooled_height, | |||
| pooled_width); | |||
| return; | |||
| } | |||
| template void ROIAlignGrad<float>(const float *dy, const float *roi_boxes, int roi_rows, int roi_cols, float *dx, | |||
| const float spatial_scale, const int sample_num, int roi_end_mode, const int channels, | |||
| const int height, const int width, const int pooled_height, const int pooled_width, | |||
| cudaStream_t cuda_stream); | |||
| @@ -21,4 +21,9 @@ void ROIAlign(const T *x, const T *roi_boxes, int roi_rows, int roi_cols, T *out | |||
| const int sample_num, int roi_end_mode, const int channels, const int height, const int width, | |||
| const int pooled_height, const int pooled_width, cudaStream_t cuda_stream); | |||
| template <typename T> | |||
| void ROIAlignGrad(const T *dy, const T *roi_boxes, int roi_rows, int roi_cols, T *dx, const T spatial_scale, | |||
| const int sample_num, int roi_end_mode, const int channels, const int height, const int width, | |||
| const int pooled_height, const int pooled_width, cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_ROI_ALIGN_IMPL_H_ | |||
| @@ -49,14 +49,14 @@ class ROIAlignGpuFwdKernel : public GpuKernel { | |||
| // Get the number of input args | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but RioAlign needs 2 input."; | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but ROIAlign needs 2 input."; | |||
| return false; | |||
| } | |||
| // Get the number of output args | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but RioAlign needs 1 output."; | |||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but ROIAlign needs 1 output."; | |||
| return false; | |||
| } | |||
| @@ -65,17 +65,18 @@ class ROIAlignGpuFwdKernel : public GpuKernel { | |||
| auto rois_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| auto x_shape_size = x_shape.size(); | |||
| if (x_shape_size < 2) { | |||
| MS_LOG(ERROR) << "x shape szie is " << x_shape_size << ", but at lease 2D."; | |||
| if (x_shape_size != 4) { | |||
| MS_LOG(ERROR) << "x shape size is " << x_shape_size << ", but shoud be 4."; | |||
| return false; | |||
| } | |||
| // Get channels, height & width | |||
| channels_ = x_shape_size >= 3 ? x_shape[x_shape_size - 3] : 1; | |||
| height_ = x_shape[x_shape_size - 2]; | |||
| width_ = x_shape[x_shape_size - 1]; | |||
| x_shape_ = {channels_, height_, width_}; | |||
| x_size_ = channels_ * height_ * width_ * sizeof(T); | |||
| int batch_N = x_shape[0]; | |||
| channels_ = x_shape[1]; | |||
| height_ = x_shape[2]; | |||
| width_ = x_shape[3]; | |||
| x_shape_ = {batch_N, channels_, height_, width_}; | |||
| x_size_ = batch_N * channels_ * height_ * width_ * sizeof(T); | |||
| // Get rois rows and cols | |||
| roi_rows_ = rois_shape[0]; | |||
| @@ -0,0 +1,27 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/gpu/nn/roi_align_grad_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_ONE( | |||
| ROIAlignGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ROIAlignGradGpuFwdKernel, float) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,141 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_ROI_ALIGN_GRAD_GPU_KERNEL_H | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_ROI_ALIGN_GRAD_GPU_KERNEL_H | |||
| #include <vector> | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||
| #include "backend/kernel_compiler/gpu/cuda_impl/roi_align_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T> | |||
| class ROIAlignGradGpuFwdKernel : public GpuKernel { | |||
| public: | |||
| ROIAlignGradGpuFwdKernel() : dy_size_(0), rois_size_(0), output_size_(0) {} | |||
| ~ROIAlignGradGpuFwdKernel() = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| const T *dy = GetDeviceAddress<T>(inputs, 0); | |||
| const T *rois = GetDeviceAddress<T>(inputs, 1); | |||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||
| ROIAlignGrad(dy, rois, roi_rows_, roi_cols_, dx, spatial_scale_, sample_num_, roi_end_mode_, channels_, height_, | |||
| width_, pooled_height_, pooled_width_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| // Get the number of input args | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but ROIAlignGrad needs 2 input."; | |||
| return false; | |||
| } | |||
| // Get the number of output args | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(ERROR) << "Output number is " << output_num << ", but ROIAlignGrad needs 1 output."; | |||
| return false; | |||
| } | |||
| // Get the input shapes | |||
| auto dy_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| auto rois_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| auto dy_shape_size = dy_shape.size(); | |||
| if (dy_shape_size != 4) { | |||
| MS_LOG(ERROR) << "dy shape size is " << dy_shape_size << ", but shoud be 4."; | |||
| return false; | |||
| } | |||
| // Parse y diff | |||
| dy_shape_ = {static_cast<int>(dy_shape[0]), static_cast<int>(dy_shape[1]), static_cast<int>(dy_shape[2]), | |||
| static_cast<int>(dy_shape[3])}; | |||
| dy_size_ = dy_shape_[0] * dy_shape_[1] * dy_shape_[2] * dy_shape_[3] * sizeof(T); | |||
| // Get rois rows and cols | |||
| roi_rows_ = rois_shape[0]; | |||
| roi_cols_ = rois_shape[1]; | |||
| rois_shape_ = {roi_rows_, roi_cols_}; | |||
| rois_size_ = roi_rows_ * roi_cols_ * sizeof(T); | |||
| // Get primitive args | |||
| xdiff_shape_ = GetAttr<std::vector<int>>(kernel_node, "xdiff_shape"); | |||
| pooled_height_ = GetAttr<int>(kernel_node, "pooled_height"); | |||
| pooled_width_ = GetAttr<int>(kernel_node, "pooled_width"); | |||
| spatial_scale_ = static_cast<T>(GetAttr<float>(kernel_node, "spatial_scale")); | |||
| sample_num_ = GetAttr<int>(kernel_node, "sample_num"); | |||
| roi_end_mode_ = 1; | |||
| // Get channels, height & width | |||
| channels_ = xdiff_shape_[1]; | |||
| height_ = xdiff_shape_[2]; | |||
| width_ = xdiff_shape_[3]; | |||
| // Get output_shape | |||
| output_shape_ = {roi_rows_, channels_, height_, width_}; | |||
| output_size_ = roi_rows_ * channels_ * height_ * width_ * sizeof(T); | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(dy_size_); | |||
| input_size_list_.push_back(rois_size_); | |||
| output_size_list_.push_back(output_size_); | |||
| } | |||
| private: | |||
| std::vector<int> xdiff_shape_; | |||
| int pooled_height_; | |||
| int pooled_width_; | |||
| T spatial_scale_; | |||
| int sample_num_; | |||
| int roi_end_mode_; | |||
| int roi_rows_; | |||
| int roi_cols_; | |||
| int channels_; | |||
| int height_; | |||
| int width_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| std::vector<int> dy_shape_; | |||
| std::vector<int> rois_shape_; | |||
| std::vector<int> output_shape_; | |||
| size_t dy_size_; | |||
| size_t rois_size_; | |||
| size_t output_size_; | |||
| }; // namespace kernel | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_ROI_ALIGN_GRAD_GPU_KERNEL_H | |||
| @@ -0,0 +1,71 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| class NetROIAlignGrad(nn.Cell): | |||
| def __init__(self, xdiff_shape, pooled_height, pooled_width, spatial_scale, sample_num): | |||
| super(NetROIAlignGrad, self).__init__() | |||
| self.roiAlignGrad = G.ROIAlignGrad( | |||
| xdiff_shape, | |||
| pooled_height, | |||
| pooled_width, | |||
| spatial_scale, | |||
| sample_num) | |||
| def construct(self, dy, rois): | |||
| return self.roiAlignGrad(dy, rois) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_roi_align_grad(): | |||
| rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float32)) | |||
| dy = Tensor(np.array([[[ | |||
| [.1, .2, .3], | |||
| [.1, .2, .3], | |||
| [.1, .2, .3] | |||
| ]]], np.float32)) | |||
| xdiff_shape = (1, 1, 6, 6) | |||
| pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||
| roi_align_grad = NetROIAlignGrad( | |||
| xdiff_shape, | |||
| pooled_height, | |||
| pooled_width, | |||
| spatial_scale, | |||
| sample_num) | |||
| output = roi_align_grad(dy, rois) | |||
| print(output) | |||
| expect = ([[[[0.0563, 0.0563, 0.0750, 0.0938, 0.1125, 0.0563], | |||
| [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375], | |||
| [0.0188, 0.0188, 0.0250, 0.0312, 0.0375, 0.0188]]]]) | |||
| np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4) | |||