| @@ -227,6 +227,8 @@ class IndexedSlices: | |||||
| IndexedSlices can only be used in `Cell`'s contruct method. | IndexedSlices can only be used in `Cell`'s contruct method. | ||||
| Pynative mode not supported at the moment. | |||||
| Args: | Args: | ||||
| indices (Tensor): A 1-D integer Tensor of shape [D0]. | indices (Tensor): A 1-D integer Tensor of shape [D0]. | ||||
| values (Tensor): A Tensor of any dtype of shape [D0, D1, ..., Dn]. | values (Tensor): A Tensor of any dtype of shape [D0, D1, ..., Dn]. | ||||
| @@ -237,16 +239,17 @@ class IndexedSlices: | |||||
| IndexedSlices, composed of `indices`, `values`, `dense_shape`. | IndexedSlices, composed of `indices`, `values`, `dense_shape`. | ||||
| Examples: | Examples: | ||||
| >>> # Create a IndexedSlices. | |||||
| >>> indices = Tensor([1, 2]) | |||||
| >>> values = Tensor([[0, 0], [1, 2]], dtype=ms.float32) | |||||
| >>> dense_shape = (3, 2) | |||||
| >>> indexed_slices = IndexedSlices(indices, values, dense_shape) | |||||
| >>> class Net(nn.Cell): | |||||
| >>> def __init__(self, dense_shape): | |||||
| >>> super(Net, self).__init__() | |||||
| >>> self.dense_shape = dense_shape | |||||
| >>> def construct(self, indices, values): | |||||
| >>> x = IndexedSlices(indices, values, self.dense_shape) | |||||
| >>> return x.values(), x.indices(), x.dense_shape() | |||||
| >>> | >>> | ||||
| >>> # Get atrr. | |||||
| >>> indices = indexed_slices.indices() | |||||
| >>> values = indexed_slices.values() | |||||
| >>> dense_shape = indexed_slices.dense_shape() | |||||
| >>> indices = Tensor([0]) | |||||
| >>> values = Tensor([[1, 2]], dtype=ms.float32) | |||||
| >>> Net((3, 2))(indices, values) | |||||
| """ | """ | ||||
| def __init__(self, indices, values, dense_shape): | def __init__(self, indices, values, dense_shape): | ||||
| raise NotImplementedError | raise NotImplementedError | ||||
| @@ -258,6 +261,8 @@ class SparseTensor: | |||||
| SparseTensor can only be used in `Cell`'s contruct method. | SparseTensor can only be used in `Cell`'s contruct method. | ||||
| Pynative mode not supported at the moment. | |||||
| For a tensor dense, its SparseTensor(indices, values, dense_shape) has | For a tensor dense, its SparseTensor(indices, values, dense_shape) has | ||||
| `dense[indices[i]] = values[i]`. | `dense[indices[i]] = values[i]`. | ||||
| @@ -273,17 +278,18 @@ class SparseTensor: | |||||
| Returns: | Returns: | ||||
| SparseTensor, composed of `indices`, `values`, `dense_shape`. | SparseTensor, composed of `indices`, `values`, `dense_shape`. | ||||
| Examples: | |||||
| >>> # Create a SparseTensor. | |||||
| Examples: | |||||
| >>> class Net(nn.Cell): | |||||
| >>> def __init__(self, dense_shape): | |||||
| >>> super(Net, self).__init__() | |||||
| >>> self.dense_shape = dense_shape | |||||
| >>> def construct(self, indices, values): | |||||
| >>> x = SparseTensor(indices, values, self.dense_shape) | |||||
| >>> return x.values(), x.indices(), x.dense_shape() | |||||
| >>> | |||||
| >>> indices = Tensor([[0, 1], [1, 2]]) | >>> indices = Tensor([[0, 1], [1, 2]]) | ||||
| >>> values = Tensor([1, 2], dtype=ms.float32) | >>> values = Tensor([1, 2], dtype=ms.float32) | ||||
| >>> dense_shape = (3, 4) | |||||
| >>> sparse_tensor = SparseTensor(indices, values, dense_shape) | |||||
| >>> | |||||
| >>> # Get atrr. | |||||
| >>> indices = sparse_tensor.indices() | |||||
| >>> values = sparse_tensor.values() | |||||
| >>> dense_shape = sparse_tensor.dense_shape() | |||||
| >>> Net((3, 4))(indices, values) | |||||
| """ | """ | ||||
| def __init__(self, indices, values, dense_shape): | def __init__(self, indices, values, dense_shape): | ||||
| raise NotImplementedError | raise NotImplementedError | ||||