| @@ -28,7 +28,7 @@ from src.utils import switch_precision, set_context | |||
| if __name__ == '__main__': | |||
| args_opt = eval_parse_args() | |||
| config = set_config(args_opt) | |||
| backbone_net, head_net, net = define_net(args_opt, config) | |||
| backbone_net, head_net, net = define_net(config) | |||
| #load the trained checkpoint file to the net for evaluation | |||
| if args_opt.head_ckpt: | |||
| @@ -42,6 +42,10 @@ if __name__ == '__main__': | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, config=config) | |||
| step_size = dataset.get_dataset_size() | |||
| if step_size == 0: | |||
| raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \ | |||
| than batch_size in config.py") | |||
| net.set_train(False) | |||
| loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') | |||
| @@ -103,9 +103,9 @@ run_cpu() | |||
| if [ $# -gt 4 ] || [ $# -lt 3 ] | |||
| then | |||
| echo "Usage: | |||
| Ascend: sh run_infer.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT] | |||
| GPU: sh run_infer.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT] | |||
| CPU: sh run_infer.sh [PLATFORM] [DATASET_PATH] [BACKBONE_CKPT] [HEAD_CKPT]" | |||
| Ascend: sh run_eval.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT] | |||
| GPU: sh run_eval.sh [PLATFORM] [DATASET_PATH] [PRETRAIN_CKPT] | |||
| CPU: sh run_eval.sh [PLATFORM] [DATASET_PATH] [BACKBONE_CKPT] [HEAD_CKPT]" | |||
| exit 1 | |||
| fi | |||
| @@ -36,7 +36,6 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1): | |||
| config(struct): the config of train and eval in diffirent platform. | |||
| repeat_num(int): the repeat times of dataset. Default: 1. | |||
| Returns: | |||
| dataset | |||
| """ | |||
| @@ -96,11 +95,7 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1): | |||
| # apply dataset repeat operation | |||
| ds = ds.repeat(repeat_num) | |||
| step_size = ds.get_dataset_size() | |||
| if step_size == 0: | |||
| raise ValueError("The step_size of dataset is zero. Check if the images of train dataset is more than batch_\ | |||
| size in config.py") | |||
| return ds, step_size | |||
| return ds | |||
| def extract_features(net, dataset_path, config): | |||
| @@ -112,12 +107,16 @@ def extract_features(net, dataset_path, config): | |||
| config=config, | |||
| repeat_num=1) | |||
| step_size = dataset.get_dataset_size() | |||
| if step_size == 0: | |||
| raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \ | |||
| than batch_size in config.py") | |||
| model = Model(net) | |||
| for i, data in enumerate(dataset.create_dict_iterator(output_numpy=True)): | |||
| features_path = os.path.join(features_folder, f"feature_{i}.npy") | |||
| label_path = os.path.join(features_folder, f"label_{i}.npy") | |||
| if not os.path.exists(features_path or not os.path.exists(label_path)): | |||
| if not os.path.exists(features_path) or not os.path.exists(label_path): | |||
| image = data["image"] | |||
| label = data["label"] | |||
| features = model.predict(Tensor(image)) | |||
| @@ -284,8 +284,11 @@ class MobileNetV2(nn.Cell): | |||
| MobileNetV2 architecture. | |||
| Args: | |||
| backbone(nn.Cell): | |||
| head(nn.Cell): | |||
| class_num (Cell): number of classes. | |||
| width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1. | |||
| has_dropout (bool): Is dropout used. Default is false | |||
| inverted_residual_setting (list): Inverted residual settings. Default is None | |||
| round_nearest (list): Channel round to . Default is 8 | |||
| Returns: | |||
| Tensor, output tensor. | |||
| @@ -310,14 +313,11 @@ class MobileNetV2(nn.Cell): | |||
| class MobileNetV2Combine(nn.Cell): | |||
| """ | |||
| MobileNetV2 architecture. | |||
| MobileNetV2Combine architecture. | |||
| Args: | |||
| class_num (Cell): number of classes. | |||
| width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1. | |||
| has_dropout (bool): Is dropout used. Default is false | |||
| inverted_residual_setting (list): Inverted residual settings. Default is None | |||
| round_nearest (list): Channel round to . Default is 8 | |||
| backbone (Cell): the features extract layers. | |||
| head (Cell): the fully connected layers. | |||
| Returns: | |||
| Tensor, output tensor. | |||
| @@ -326,7 +326,7 @@ class MobileNetV2Combine(nn.Cell): | |||
| """ | |||
| def __init__(self, backbone, head): | |||
| super(MobileNetV2Combine, self).__init__() | |||
| super(MobileNetV2Combine, self).__init__(auto_prefix=False) | |||
| self.backbone = backbone | |||
| self.head = head | |||
| @@ -119,20 +119,9 @@ def load_ckpt(network, pretrain_ckpt_path, trainable=True): | |||
| for param in network.get_parameters(): | |||
| param.requires_grad = False | |||
| def define_net(args, config): | |||
| def define_net(config): | |||
| backbone_net = MobileNetV2Backbone() | |||
| head_net = MobileNetV2Head(input_channel=backbone_net.out_channels, num_classes=config.num_classes) | |||
| net = mobilenet_v2(backbone_net, head_net) | |||
| # load the ckpt file to the network for fine tune or incremental leaning | |||
| if args.pretrain_ckpt: | |||
| if args.train_method == "fine_tune": | |||
| load_ckpt(net, args.pretrain_ckpt) | |||
| elif args.train_method == "incremental_learn": | |||
| load_ckpt(backbone_net, args.pretrain_ckpt, trainable=False) | |||
| elif args.train_method == "train": | |||
| pass | |||
| else: | |||
| raise ValueError("must input the usage of pretrain_ckpt when the pretrain_ckpt isn't None") | |||
| return backbone_net, head_net, net | |||
| @@ -35,7 +35,7 @@ from src.config import set_config | |||
| from src.args import train_parse_args | |||
| from src.utils import context_device_init, switch_precision, config_ckpoint | |||
| from src.models import CrossEntropyWithLabelSmooth, define_net | |||
| from src.models import CrossEntropyWithLabelSmooth, define_net, load_ckpt | |||
| set_seed(1) | |||
| @@ -50,7 +50,18 @@ if __name__ == '__main__': | |||
| context_device_init(config) | |||
| # define network | |||
| backbone_net, head_net, net = define_net(args_opt, config) | |||
| backbone_net, head_net, net = define_net(config) | |||
| # load the ckpt file to the network for fine tune or incremental leaning | |||
| if args_opt.pretrain_ckpt: | |||
| if args_opt.train_method == "fine_tune": | |||
| load_ckpt(net, args_opt.pretrain_ckpt) | |||
| elif args_opt.train_method == "incremental_learn": | |||
| load_ckpt(backbone_net, args_opt.pretrain_ckpt, trainable=False) | |||
| elif args_opt.train_method == "train": | |||
| pass | |||
| else: | |||
| raise ValueError("must input the usage of pretrain_ckpt when the pretrain_ckpt isn't None") | |||
| # CPU only support "incremental_learn" | |||
| if args_opt.train_method == "incremental_learn": | |||
| @@ -60,7 +71,11 @@ if __name__ == '__main__': | |||
| elif args_opt.train_method in ("train", "fine_tune"): | |||
| if args_opt.platform == "CPU": | |||
| raise ValueError("Currently, CPU only support \"incremental_learn\", not \"fine_tune\" or \"train\".") | |||
| dataset, step_size = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config) | |||
| dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config) | |||
| step_size = dataset.get_dataset_size() | |||
| if step_size == 0: | |||
| raise ValueError("The step_size of dataset is zero. Check if the images count of train dataset is more \ | |||
| than batch_size in config.py") | |||
| # Currently, only Ascend support switch precision. | |||
| switch_precision(net, mstype.float16, config) | |||