| @@ -0,0 +1,23 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the License); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # httpwww.apache.orglicensesLICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an AS IS BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Init DeepLabv3.""" | |||
| from .deeplabv3 import ASPP, DeepLabV3, deeplabv3_resnet50 | |||
| from .backbone import * | |||
| __all__ = [ | |||
| "ASPP", "DeepLabV3", "deeplabv3_resnet50" | |||
| ] | |||
| __all__.extend(backbone.__all__) | |||
| @@ -0,0 +1,21 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the License); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # httpwww.apache.orglicensesLICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an AS IS BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Init backbone.""" | |||
| from .resnet_deeplab import Subsample, DepthwiseConv2dNative, SpaceToBatch, BatchToSpace, ResNetV1, \ | |||
| RootBlockBeta, resnet50_dl | |||
| __all__ = [ | |||
| "Subsample", "DepthwiseConv2dNative", "SpaceToBatch", "BatchToSpace", "ResNetV1", "RootBlockBeta", "resnet50_dl" | |||
| ] | |||
| @@ -0,0 +1,577 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ResNet based DeepLab.""" | |||
| import mindspore.nn as nn | |||
| from mindspore.ops import operations as P | |||
| from mindspore.common.initializer import initializer | |||
| from mindspore._checkparam import twice | |||
| from mindspore.common.parameter import Parameter | |||
| def _conv_bn_relu(in_channel, | |||
| out_channel, | |||
| ksize, | |||
| stride=1, | |||
| padding=0, | |||
| dilation=1, | |||
| pad_mode="pad", | |||
| use_batch_statistics=False): | |||
| """Get a conv2d -> batchnorm -> relu layer""" | |||
| return nn.SequentialCell( | |||
| [nn.Conv2d(in_channel, | |||
| out_channel, | |||
| kernel_size=ksize, | |||
| stride=stride, | |||
| padding=padding, | |||
| dilation=dilation, | |||
| pad_mode=pad_mode), | |||
| nn.BatchNorm2d(out_channel, use_batch_statistics=use_batch_statistics), | |||
| nn.ReLU()] | |||
| ) | |||
| def _deep_conv_bn_relu(in_channel, | |||
| channel_multiplier, | |||
| ksize, | |||
| stride=1, | |||
| padding=0, | |||
| dilation=1, | |||
| pad_mode="pad", | |||
| use_batch_statistics=False): | |||
| """Get a spacetobatch -> conv2d -> batchnorm -> relu -> batchtospace layer""" | |||
| return nn.SequentialCell( | |||
| [DepthwiseConv2dNative(in_channel, | |||
| channel_multiplier, | |||
| kernel_size=ksize, | |||
| stride=stride, | |||
| padding=padding, | |||
| dilation=dilation, | |||
| pad_mode=pad_mode), | |||
| nn.BatchNorm2d(channel_multiplier * in_channel, use_batch_statistics=use_batch_statistics), | |||
| nn.ReLU()] | |||
| ) | |||
| def _stob_deep_conv_btos_bn_relu(in_channel, | |||
| channel_multiplier, | |||
| ksize, | |||
| space_to_batch_block_shape, | |||
| batch_to_space_block_shape, | |||
| paddings, | |||
| crops, | |||
| stride=1, | |||
| padding=0, | |||
| dilation=1, | |||
| pad_mode="pad", | |||
| use_batch_statistics=False): | |||
| """Get a spacetobatch -> conv2d -> batchnorm -> relu -> batchtospace layer""" | |||
| return nn.SequentialCell( | |||
| [SpaceToBatch(space_to_batch_block_shape, paddings), | |||
| DepthwiseConv2dNative(in_channel, | |||
| channel_multiplier, | |||
| kernel_size=ksize, | |||
| stride=stride, | |||
| padding=padding, | |||
| dilation=dilation, | |||
| pad_mode=pad_mode), | |||
| BatchToSpace(batch_to_space_block_shape, crops), | |||
| nn.BatchNorm2d(channel_multiplier * in_channel, use_batch_statistics=use_batch_statistics), | |||
| nn.ReLU()] | |||
| ) | |||
| def _stob_conv_btos_bn_relu(in_channel, | |||
| out_channel, | |||
| ksize, | |||
| space_to_batch_block_shape, | |||
| batch_to_space_block_shape, | |||
| paddings, | |||
| crops, | |||
| stride=1, | |||
| padding=0, | |||
| dilation=1, | |||
| pad_mode="pad", | |||
| use_batch_statistics=False): | |||
| """Get a spacetobatch -> conv2d -> batchnorm -> relu -> batchtospace layer""" | |||
| return nn.SequentialCell([SpaceToBatch(space_to_batch_block_shape, paddings), | |||
| nn.Conv2d(in_channel, | |||
| out_channel, | |||
| kernel_size=ksize, | |||
| stride=stride, | |||
| padding=padding, | |||
| dilation=dilation, | |||
| pad_mode=pad_mode), | |||
| BatchToSpace(batch_to_space_block_shape, crops), | |||
| nn.BatchNorm2d(out_channel, use_batch_statistics=use_batch_statistics), | |||
| nn.ReLU()] | |||
| ) | |||
| def _make_layer(block, | |||
| in_channels, | |||
| out_channels, | |||
| num_blocks, | |||
| stride=1, | |||
| rate=1, | |||
| multi_grads=None, | |||
| output_stride=None, | |||
| g_current_stride=2, | |||
| g_rate=1): | |||
| """Make layer for DeepLab-ResNet network.""" | |||
| if multi_grads is None: | |||
| multi_grads = [1] * num_blocks | |||
| # (stride == 2, num_blocks == 4 --> strides == [1, 1, 1, 2]) | |||
| strides = [1] * (num_blocks - 1) + [stride] | |||
| blocks = [] | |||
| if output_stride is not None: | |||
| if output_stride % 4 != 0: | |||
| raise ValueError('The output_stride needs to be a multiple of 4.') | |||
| output_stride //= 4 | |||
| for i_stride, _ in enumerate(strides): | |||
| if output_stride is not None and g_current_stride > output_stride: | |||
| raise ValueError('The target output_stride cannot be reached.') | |||
| if output_stride is not None and g_current_stride == output_stride: | |||
| b_rate = g_rate | |||
| b_stride = 1 | |||
| g_rate *= strides[i_stride] | |||
| else: | |||
| b_rate = rate | |||
| b_stride = strides[i_stride] | |||
| g_current_stride *= strides[i_stride] | |||
| blocks.append(block(in_channels=in_channels, | |||
| out_channels=out_channels, | |||
| stride=b_stride, | |||
| rate=b_rate, | |||
| multi_grad=multi_grads[i_stride])) | |||
| in_channels = out_channels | |||
| layer = nn.SequentialCell(blocks) | |||
| return layer, g_current_stride, g_rate | |||
| class Subsample(nn.Cell): | |||
| """ | |||
| Subsample for DeepLab-ResNet. | |||
| Args: | |||
| factor (int): Sample factor. | |||
| Returns: | |||
| Tensor, the sub sampled tensor. | |||
| Examples: | |||
| >>> Subsample(2) | |||
| """ | |||
| def __init__(self, factor): | |||
| super(Subsample, self).__init__() | |||
| self.factor = factor | |||
| self.pool = nn.MaxPool2d(kernel_size=1, | |||
| stride=factor) | |||
| def construct(self, x): | |||
| if self.factor == 1: | |||
| return x | |||
| return self.pool(x) | |||
| class SpaceToBatch(nn.Cell): | |||
| def __init__(self, block_shape, paddings): | |||
| super(SpaceToBatch, self).__init__() | |||
| self.space_to_batch = P.SpaceToBatch(block_shape, paddings) | |||
| self.bs = block_shape | |||
| self.pd = paddings | |||
| def construct(self, x): | |||
| return self.space_to_batch(x) | |||
| class BatchToSpace(nn.Cell): | |||
| def __init__(self, block_shape, crops): | |||
| super(BatchToSpace, self).__init__() | |||
| self.batch_to_space = P.BatchToSpace(block_shape, crops) | |||
| self.bs = block_shape | |||
| self.cr = crops | |||
| def construct(self, x): | |||
| return self.batch_to_space(x) | |||
| class _DepthwiseConv2dNative(nn.Cell): | |||
| """Depthwise Conv2D Cell.""" | |||
| def __init__(self, | |||
| in_channels, | |||
| channel_multiplier, | |||
| kernel_size, | |||
| stride, | |||
| pad_mode, | |||
| padding, | |||
| dilation, | |||
| group, | |||
| weight_init): | |||
| super(_DepthwiseConv2dNative, self).__init__() | |||
| self.in_channels = in_channels | |||
| self.channel_multiplier = channel_multiplier | |||
| self.kernel_size = kernel_size | |||
| self.stride = stride | |||
| self.pad_mode = pad_mode | |||
| self.padding = padding | |||
| self.dilation = dilation | |||
| self.group = group | |||
| if not (isinstance(in_channels, int) and in_channels > 0): | |||
| raise ValueError('Attr \'in_channels\' of \'DepthwiseConv2D\' Op passed ' | |||
| + str(in_channels) + ', should be a int and greater than 0.') | |||
| if (not isinstance(kernel_size, tuple)) or len(kernel_size) != 2 or \ | |||
| (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \ | |||
| kernel_size[0] < 1 or kernel_size[1] < 1: | |||
| raise ValueError('Attr \'kernel_size\' of \'DepthwiseConv2D\' Op passed ' | |||
| + str(self.kernel_size) + ', should be a int or tuple and equal to or greater than 1.') | |||
| self.weight = Parameter(initializer(weight_init, [1, in_channels // group, *kernel_size]), | |||
| name='weight') | |||
| def construct(self, *inputs): | |||
| """Must be overridden by all subclasses.""" | |||
| raise NotImplementedError | |||
| class DepthwiseConv2dNative(_DepthwiseConv2dNative): | |||
| """Depthwise Conv2D Cell.""" | |||
| def __init__(self, | |||
| in_channels, | |||
| channel_multiplier, | |||
| kernel_size, | |||
| stride=1, | |||
| pad_mode='same', | |||
| padding=0, | |||
| dilation=1, | |||
| group=1, | |||
| weight_init='normal'): | |||
| kernel_size = twice(kernel_size) | |||
| super(DepthwiseConv2dNative, self).__init__( | |||
| in_channels, | |||
| channel_multiplier, | |||
| kernel_size, | |||
| stride, | |||
| pad_mode, | |||
| padding, | |||
| dilation, | |||
| group, | |||
| weight_init) | |||
| self.depthwise_conv2d_native = P.DepthwiseConv2dNative(channel_multiplier=self.channel_multiplier, | |||
| kernel_size=self.kernel_size, | |||
| mode=3, | |||
| pad_mode=self.pad_mode, | |||
| pad=self.padding, | |||
| stride=self.stride, | |||
| dilation=self.dilation, | |||
| group=self.group) | |||
| def set_strategy(self, strategy): | |||
| self.depthwise_conv2d_native.set_strategy(strategy) | |||
| return self | |||
| def construct(self, x): | |||
| return self.depthwise_conv2d_native(x, self.weight) | |||
| class BottleneckV1(nn.Cell): | |||
| """ | |||
| ResNet V1 BottleneckV1 block definition. | |||
| Args: | |||
| in_channels (int): Input channel. | |||
| out_channels (int): Output channel. | |||
| stride (int): Stride size for the initial convolutional layer. Default: 1. | |||
| rate (int): Rate for convolution. Default: 1. | |||
| multi_grad (int): Employ a rate within network. Default: 1. | |||
| Returns: | |||
| Tensor, the ResNet unit's output. | |||
| Examples: | |||
| >>> BottleneckV1(3,256,stride=2) | |||
| """ | |||
| def __init__(self, | |||
| in_channels, | |||
| out_channels, | |||
| stride=1, | |||
| use_batch_statistics=False, | |||
| use_batch_to_stob_and_btos=False): | |||
| super(BottleneckV1, self).__init__() | |||
| expansion = 4 | |||
| mid_channels = out_channels // expansion | |||
| self.conv_bn1 = _conv_bn_relu(in_channels, | |||
| mid_channels, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=use_batch_statistics) | |||
| self.conv_bn2 = _conv_bn_relu(mid_channels, | |||
| mid_channels, | |||
| ksize=3, | |||
| stride=stride, | |||
| padding=1, | |||
| dilation=1, | |||
| use_batch_statistics=use_batch_statistics) | |||
| if use_batch_to_stob_and_btos: | |||
| self.conv_bn2 = _stob_conv_btos_bn_relu(mid_channels, | |||
| mid_channels, | |||
| ksize=3, | |||
| stride=stride, | |||
| padding=0, | |||
| dilation=1, | |||
| space_to_batch_block_shape=2, | |||
| batch_to_space_block_shape=2, | |||
| paddings=[[2, 3], [2, 3]], | |||
| crops=[[0, 1], [0, 1]], | |||
| pad_mode="valid", | |||
| use_batch_statistics=use_batch_statistics) | |||
| self.conv3 = nn.Conv2d(mid_channels, | |||
| out_channels, | |||
| kernel_size=1, | |||
| stride=1) | |||
| self.bn3 = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) | |||
| if in_channels != out_channels: | |||
| conv = nn.Conv2d(in_channels, | |||
| out_channels, | |||
| kernel_size=1, | |||
| stride=stride) | |||
| bn = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) | |||
| self.downsample = nn.SequentialCell([conv, bn]) | |||
| else: | |||
| self.downsample = Subsample(stride) | |||
| self.add = P.TensorAdd() | |||
| self.relu = nn.ReLU() | |||
| self.Reshape = P.Reshape() | |||
| def construct(self, x): | |||
| out = self.conv_bn1(x) | |||
| out = self.conv_bn2(out) | |||
| out = self.bn3(self.conv3(out)) | |||
| out = self.add(out, self.downsample(x)) | |||
| out = self.relu(out) | |||
| return out | |||
| class BottleneckV2(nn.Cell): | |||
| """ | |||
| ResNet V2 Bottleneck variance V2 block definition. | |||
| Args: | |||
| in_channels (int): Input channel. | |||
| out_channels (int): Output channel. | |||
| stride (int): Stride size for the initial convolutional layer. Default: 1. | |||
| Returns: | |||
| Tensor, the ResNet unit's output. | |||
| Examples: | |||
| >>> BottleneckV2(3,256,stride=2) | |||
| """ | |||
| def __init__(self, | |||
| in_channels, | |||
| out_channels, | |||
| stride=1, | |||
| use_batch_statistics=False, | |||
| use_batch_to_stob_and_btos=False, | |||
| dilation=1): | |||
| super(BottleneckV2, self).__init__() | |||
| expansion = 4 | |||
| mid_channels = out_channels // expansion | |||
| self.conv_bn1 = _conv_bn_relu(in_channels, | |||
| mid_channels, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=use_batch_statistics) | |||
| self.conv_bn2 = _conv_bn_relu(mid_channels, | |||
| mid_channels, | |||
| ksize=3, | |||
| stride=stride, | |||
| padding=1, | |||
| dilation=dilation, | |||
| use_batch_statistics=use_batch_statistics) | |||
| if use_batch_to_stob_and_btos: | |||
| self.conv_bn2 = _stob_conv_btos_bn_relu(mid_channels, | |||
| mid_channels, | |||
| ksize=3, | |||
| stride=stride, | |||
| padding=0, | |||
| dilation=1, | |||
| space_to_batch_block_shape=2, | |||
| batch_to_space_block_shape=2, | |||
| paddings=[[2, 3], [2, 3]], | |||
| crops=[[0, 1], [0, 1]], | |||
| pad_mode="valid", | |||
| use_batch_statistics=use_batch_statistics) | |||
| self.conv3 = nn.Conv2d(mid_channels, | |||
| out_channels, | |||
| kernel_size=1, | |||
| stride=1) | |||
| self.bn3 = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) | |||
| if in_channels != out_channels: | |||
| conv = nn.Conv2d(in_channels, | |||
| out_channels, | |||
| kernel_size=1, | |||
| stride=stride) | |||
| bn = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) | |||
| self.downsample = nn.SequentialCell([conv, bn]) | |||
| else: | |||
| self.downsample = Subsample(stride) | |||
| self.add = P.TensorAdd() | |||
| self.relu = nn.ReLU() | |||
| def construct(self, x): | |||
| out = self.conv_bn1(x) | |||
| out = self.conv_bn2(out) | |||
| out = self.bn3(self.conv3(out)) | |||
| out = self.add(out, x) | |||
| out = self.relu(out) | |||
| return out | |||
| class BottleneckV3(nn.Cell): | |||
| """ | |||
| ResNet V1 Bottleneck variance V1 block definition. | |||
| Args: | |||
| in_channels (int): Input channel. | |||
| out_channels (int): Output channel. | |||
| stride (int): Stride size for the initial convolutional layer. Default: 1. | |||
| Returns: | |||
| Tensor, the ResNet unit's output. | |||
| Examples: | |||
| >>> BottleneckV3(3,256,stride=2) | |||
| """ | |||
| def __init__(self, | |||
| in_channels, | |||
| out_channels, | |||
| stride=1, | |||
| use_batch_statistics=False): | |||
| super(BottleneckV3, self).__init__() | |||
| expansion = 4 | |||
| mid_channels = out_channels // expansion | |||
| self.conv_bn1 = _conv_bn_relu(in_channels, | |||
| mid_channels, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=use_batch_statistics) | |||
| self.conv_bn2 = _conv_bn_relu(mid_channels, | |||
| mid_channels, | |||
| ksize=3, | |||
| stride=stride, | |||
| padding=1, | |||
| dilation=1, | |||
| use_batch_statistics=use_batch_statistics) | |||
| self.conv3 = nn.Conv2d(mid_channels, | |||
| out_channels, | |||
| kernel_size=1, | |||
| stride=1) | |||
| self.bn3 = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) | |||
| if in_channels != out_channels: | |||
| conv = nn.Conv2d(in_channels, | |||
| out_channels, | |||
| kernel_size=1, | |||
| stride=stride) | |||
| bn = nn.BatchNorm2d(out_channels, use_batch_statistics=use_batch_statistics) | |||
| self.downsample = nn.SequentialCell([conv, bn]) | |||
| else: | |||
| self.downsample = Subsample(stride) | |||
| self.downsample = Subsample(stride) | |||
| self.add = P.TensorAdd() | |||
| self.relu = nn.ReLU() | |||
| def construct(self, x): | |||
| out = self.conv_bn1(x) | |||
| out = self.conv_bn2(out) | |||
| out = self.bn3(self.conv3(out)) | |||
| out = self.add(out, self.downsample(x)) | |||
| out = self.relu(out) | |||
| return out | |||
| class ResNetV1(nn.Cell): | |||
| """ | |||
| ResNet V1 for DeepLab. | |||
| Args: | |||
| Returns: | |||
| Tuple, output tensor tuple, (c2,c5). | |||
| Examples: | |||
| >>> ResNetV1(False) | |||
| """ | |||
| def __init__(self, fine_tune_batch_norm=False): | |||
| super(ResNetV1, self).__init__() | |||
| self.layer_root = nn.SequentialCell( | |||
| [RootBlockBeta(fine_tune_batch_norm), | |||
| nn.MaxPool2d(kernel_size=(3, 3), | |||
| stride=(2, 2), | |||
| pad_mode='same')]) | |||
| self.layer1_1 = BottleneckV1(128, 256, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer1_2 = BottleneckV2(256, 256, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer1_3 = BottleneckV3(256, 256, stride=2, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer2_1 = BottleneckV1(256, 512, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer2_2 = BottleneckV2(512, 512, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer2_3 = BottleneckV2(512, 512, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer2_4 = BottleneckV3(512, 512, stride=2, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer3_1 = BottleneckV1(512, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer3_2 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer3_3 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer3_4 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer3_5 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer3_6 = BottleneckV2(1024, 1024, stride=1, use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer4_1 = BottleneckV1(1024, 2048, stride=1, use_batch_to_stob_and_btos=True, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer4_2 = BottleneckV2(2048, 2048, stride=1, use_batch_to_stob_and_btos=True, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.layer4_3 = BottleneckV2(2048, 2048, stride=1, use_batch_to_stob_and_btos=True, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| def construct(self, x): | |||
| x = self.layer_root(x) | |||
| x = self.layer1_1(x) | |||
| c2 = self.layer1_2(x) | |||
| x = self.layer1_3(c2) | |||
| x = self.layer2_1(x) | |||
| x = self.layer2_2(x) | |||
| x = self.layer2_3(x) | |||
| x = self.layer2_4(x) | |||
| x = self.layer3_1(x) | |||
| x = self.layer3_2(x) | |||
| x = self.layer3_3(x) | |||
| x = self.layer3_4(x) | |||
| x = self.layer3_5(x) | |||
| x = self.layer3_6(x) | |||
| x = self.layer4_1(x) | |||
| x = self.layer4_2(x) | |||
| c5 = self.layer4_3(x) | |||
| return c2, c5 | |||
| class RootBlockBeta(nn.Cell): | |||
| """ | |||
| ResNet V1 beta root block definition. | |||
| Returns: | |||
| Tensor, the block unit's output. | |||
| Examples: | |||
| >>> RootBlockBeta() | |||
| """ | |||
| def __init__(self, fine_tune_batch_norm=False): | |||
| super(RootBlockBeta, self).__init__() | |||
| self.conv1 = _conv_bn_relu(3, 64, ksize=3, stride=2, padding=0, pad_mode="valid", | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.conv2 = _conv_bn_relu(64, 64, ksize=3, stride=1, padding=0, pad_mode="same", | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.conv3 = _conv_bn_relu(64, 128, ksize=3, stride=1, padding=0, pad_mode="same", | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| def construct(self, x): | |||
| x = self.conv1(x) | |||
| x = self.conv2(x) | |||
| x = self.conv3(x) | |||
| return x | |||
| def resnet50_dl(fine_tune_batch_norm=False): | |||
| return ResNetV1(fine_tune_batch_norm) | |||
| @@ -0,0 +1,38 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """ | |||
| network config setting, will be used in train.py and evaluation.py | |||
| """ | |||
| from easydict import EasyDict as ed | |||
| config = ed({ | |||
| "learning_rate": 0.0014, | |||
| "weight_decay": 0.00005, | |||
| "momentum": 0.97, | |||
| "crop_size": 513, | |||
| "eval_scales": [0.5, 0.75, 1.0, 1.25, 1.5, 1.75], | |||
| "atrous_rates": None, | |||
| "image_pyramid": None, | |||
| "output_stride": 16, | |||
| "fine_tune_batch_norm": False, | |||
| "ignore_label": 255, | |||
| "decoder_output_stride": None, | |||
| "seg_num_classes": 21, | |||
| "epoch_size": 6, | |||
| "batch_size": 2, | |||
| "enable_save_ckpt": True, | |||
| "save_checkpoint_steps": 10000, | |||
| "save_checkpoint_num": 1 | |||
| }) | |||
| @@ -0,0 +1,457 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the License); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # httpwww.apache.orglicensesLICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an AS IS BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """DeepLabv3.""" | |||
| import numpy as np | |||
| import mindspore.nn as nn | |||
| from mindspore.ops import operations as P | |||
| from .backbone.resnet_deeplab import _conv_bn_relu, resnet50_dl, _deep_conv_bn_relu, \ | |||
| DepthwiseConv2dNative, SpaceToBatch, BatchToSpace | |||
| class ASPPSampleBlock(nn.Cell): | |||
| """ASPP sample block.""" | |||
| def __init__(self, feature_shape, scale_size, output_stride): | |||
| super(ASPPSampleBlock, self).__init__() | |||
| sample_h = (feature_shape[0] * scale_size + 1) / output_stride + 1 | |||
| sample_w = (feature_shape[1] * scale_size + 1) / output_stride + 1 | |||
| self.sample = P.ResizeBilinear((int(sample_h), int(sample_w)), align_corners=True) | |||
| def construct(self, x): | |||
| return self.sample(x) | |||
| class ASPP(nn.Cell): | |||
| """ | |||
| ASPP model for DeepLabv3. | |||
| Args: | |||
| channel (int): Input channel. | |||
| depth (int): Output channel. | |||
| feature_shape (list): The shape of feature,[h,w]. | |||
| scale_sizes (list): Input scales for multi-scale feature extraction. | |||
| atrous_rates (list): Atrous rates for atrous spatial pyramid pooling. | |||
| output_stride (int): 'The ratio of input to output spatial resolution.' | |||
| fine_tune_batch_norm (bool): 'Fine tune the batch norm parameters or not' | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> ASPP(channel=2048,256,[14,14],[1],[6],16) | |||
| """ | |||
| def __init__(self, channel, depth, feature_shape, scale_sizes, | |||
| atrous_rates, output_stride, fine_tune_batch_norm=False): | |||
| super(ASPP, self).__init__() | |||
| self.aspp0 = _conv_bn_relu(channel, | |||
| depth, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.atrous_rates = [] | |||
| if atrous_rates is not None: | |||
| self.atrous_rates = atrous_rates | |||
| self.aspp_pointwise = _conv_bn_relu(channel, | |||
| depth, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.aspp_depth_depthwiseconv = DepthwiseConv2dNative(channel, | |||
| channel_multiplier=1, | |||
| kernel_size=3, | |||
| stride=1, | |||
| dilation=1, | |||
| pad_mode="valid") | |||
| self.aspp_depth_bn = nn.BatchNorm2d(1 * channel, use_batch_statistics=fine_tune_batch_norm) | |||
| self.aspp_depth_relu = nn.ReLU() | |||
| self.aspp_depths = [] | |||
| self.aspp_depth_spacetobatchs = [] | |||
| self.aspp_depth_batchtospaces = [] | |||
| for scale_size in scale_sizes: | |||
| aspp_scale_depth_size = np.ceil((feature_shape[0]*scale_size)/16) | |||
| if atrous_rates is None: | |||
| break | |||
| for rate in atrous_rates: | |||
| padding = 0 | |||
| for j in range(100): | |||
| padded_size = rate * j | |||
| if padded_size >= aspp_scale_depth_size + 2 * rate: | |||
| padding = padded_size - aspp_scale_depth_size - 2 * rate | |||
| break | |||
| paddings = [[rate, rate + int(padding)], | |||
| [rate, rate + int(padding)]] | |||
| self.aspp_depth_spacetobatch = SpaceToBatch(rate, paddings) | |||
| self.aspp_depth_spacetobatchs.append(self.aspp_depth_spacetobatch) | |||
| crops = [[0, int(padding)], [0, int(padding)]] | |||
| self.aspp_depth_batchtospace = BatchToSpace(rate, crops) | |||
| self.aspp_depth_batchtospaces.append(self.aspp_depth_batchtospace) | |||
| self.aspp_depths = nn.CellList(self.aspp_depths) | |||
| self.aspp_depth_spacetobatchs = nn.CellList(self.aspp_depth_spacetobatchs) | |||
| self.aspp_depth_batchtospaces = nn.CellList(self.aspp_depth_batchtospaces) | |||
| self.global_pooling = nn.AvgPool2d(kernel_size=(int(feature_shape[0]), int(feature_shape[1]))) | |||
| self.global_poolings = [] | |||
| for scale_size in scale_sizes: | |||
| pooling_h = np.ceil((feature_shape[0]*scale_size)/output_stride) | |||
| pooling_w = np.ceil((feature_shape[0]*scale_size)/output_stride) | |||
| self.global_poolings.append(nn.AvgPool2d(kernel_size=(int(pooling_h), int(pooling_w)))) | |||
| self.global_poolings = nn.CellList(self.global_poolings) | |||
| self.conv_bn = _conv_bn_relu(channel, | |||
| depth, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.samples = [] | |||
| for scale_size in scale_sizes: | |||
| self.samples.append(ASPPSampleBlock(feature_shape, scale_size, output_stride)) | |||
| self.samples = nn.CellList(self.samples) | |||
| self.feature_shape = feature_shape | |||
| self.concat = P.Concat(axis=1) | |||
| def construct(self, x, scale_index=0): | |||
| aspp0 = self.aspp0(x) | |||
| aspp1 = self.global_poolings[scale_index](x) | |||
| aspp1 = self.conv_bn(aspp1) | |||
| aspp1 = self.samples[scale_index](aspp1) | |||
| output = self.concat((aspp1, aspp0)) | |||
| for i in range(len(self.atrous_rates)): | |||
| aspp_i = self.aspp_depth_spacetobatchs[i + scale_index * len(self.atrous_rates)](x) | |||
| aspp_i = self.aspp_depth_depthwiseconv(aspp_i) | |||
| aspp_i = self.aspp_depth_batchtospaces[i + scale_index * len(self.atrous_rates)](aspp_i) | |||
| aspp_i = self.aspp_depth_bn(aspp_i) | |||
| aspp_i = self.aspp_depth_relu(aspp_i) | |||
| aspp_i = self.aspp_pointwise(aspp_i) | |||
| output = self.concat((output, aspp_i)) | |||
| return output | |||
| class DecoderSampleBlock(nn.Cell): | |||
| """Decoder sample block.""" | |||
| def __init__(self, feature_shape, scale_size=1.0, decoder_output_stride=4): | |||
| super(DecoderSampleBlock, self).__init__() | |||
| sample_h = (feature_shape[0] * scale_size + 1) / decoder_output_stride + 1 | |||
| sample_w = (feature_shape[1] * scale_size + 1) / decoder_output_stride + 1 | |||
| self.sample = P.ResizeBilinear((int(sample_h), int(sample_w)), align_corners=True) | |||
| def construct(self, x): | |||
| return self.sample(x) | |||
| class Decoder(nn.Cell): | |||
| """ | |||
| Decode module for DeepLabv3. | |||
| Args: | |||
| low_level_channel (int): Low level input channel | |||
| channel (int): Input channel. | |||
| depth (int): Output channel. | |||
| feature_shape (list): 'Input image shape, [N,C,H,W].' | |||
| scale_sizes (list): 'Input scales for multi-scale feature extraction.' | |||
| decoder_output_stride (int): 'The ratio of input to output spatial resolution' | |||
| fine_tune_batch_norm (bool): 'Fine tune the batch norm parameters or not' | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> Decoder(256, 100, [56,56]) | |||
| """ | |||
| def __init__(self, | |||
| low_level_channel, | |||
| channel, | |||
| depth, | |||
| feature_shape, | |||
| scale_sizes, | |||
| decoder_output_stride, | |||
| fine_tune_batch_norm): | |||
| super(Decoder, self).__init__() | |||
| self.feature_projection = _conv_bn_relu(low_level_channel, 48, ksize=1, stride=1, | |||
| pad_mode="same", use_batch_statistics=fine_tune_batch_norm) | |||
| self.decoder_depth0 = _deep_conv_bn_relu(channel + 48, | |||
| channel_multiplier=1, | |||
| ksize=3, | |||
| stride=1, | |||
| pad_mode="same", | |||
| dilation=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.decoder_pointwise0 = _conv_bn_relu(channel + 48, | |||
| depth, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.decoder_depth1 = _deep_conv_bn_relu(depth, | |||
| channel_multiplier=1, | |||
| ksize=3, | |||
| stride=1, | |||
| pad_mode="same", | |||
| dilation=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.decoder_pointwise1 = _conv_bn_relu(depth, | |||
| depth, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.depth = depth | |||
| self.concat = P.Concat(axis=1) | |||
| self.samples = [] | |||
| for scale_size in scale_sizes: | |||
| self.samples.append(DecoderSampleBlock(feature_shape, scale_size, decoder_output_stride)) | |||
| self.samples = nn.CellList(self.samples) | |||
| def construct(self, x, low_level_feature, scale_index): | |||
| low_level_feature = self.feature_projection(low_level_feature) | |||
| low_level_feature = self.samples[scale_index](low_level_feature) | |||
| x = self.samples[scale_index](x) | |||
| output = self.concat((x, low_level_feature)) | |||
| output = self.decoder_depth0(output) | |||
| output = self.decoder_pointwise0(output) | |||
| output = self.decoder_depth1(output) | |||
| output = self.decoder_pointwise1(output) | |||
| return output | |||
| class SingleDeepLabV3(nn.Cell): | |||
| """ | |||
| DeepLabv3 Network. | |||
| Args: | |||
| num_classes (int): Class number. | |||
| feature_shape (list): Input image shape, [N,C,H,W]. | |||
| backbone (Cell): Backbone Network. | |||
| channel (int): Resnet output channel. | |||
| depth (int): ASPP block depth. | |||
| scale_sizes (list): Input scales for multi-scale feature extraction. | |||
| atrous_rates (list): Atrous rates for atrous spatial pyramid pooling. | |||
| decoder_output_stride (int): 'The ratio of input to output spatial resolution' | |||
| output_stride (int): 'The ratio of input to output spatial resolution.' | |||
| fine_tune_batch_norm (bool): 'Fine tune the batch norm parameters or not' | |||
| Returns: | |||
| Tensor, output tensor. | |||
| Examples: | |||
| >>> SingleDeepLabV3(num_classes=10, | |||
| >>> feature_shape=[1,3,224,224], | |||
| >>> backbone=resnet50_dl(), | |||
| >>> channel=2048, | |||
| >>> depth=256) | |||
| >>> scale_sizes=[1.0]) | |||
| >>> atrous_rates=[6]) | |||
| >>> decoder_output_stride=4) | |||
| >>> output_stride=16) | |||
| """ | |||
| def __init__(self, | |||
| num_classes, | |||
| feature_shape, | |||
| backbone, | |||
| channel, | |||
| depth, | |||
| scale_sizes, | |||
| atrous_rates, | |||
| decoder_output_stride, | |||
| output_stride, | |||
| fine_tune_batch_norm=False): | |||
| super(SingleDeepLabV3, self).__init__() | |||
| self.num_classes = num_classes | |||
| self.channel = channel | |||
| self.depth = depth | |||
| self.scale_sizes = [] | |||
| for scale_size in np.sort(scale_sizes): | |||
| self.scale_sizes.append(scale_size) | |||
| self.net = backbone | |||
| self.aspp = ASPP(channel=self.channel, | |||
| depth=self.depth, | |||
| feature_shape=[feature_shape[2], | |||
| feature_shape[3]], | |||
| scale_sizes=self.scale_sizes, | |||
| atrous_rates=atrous_rates, | |||
| output_stride=output_stride, | |||
| fine_tune_batch_norm=fine_tune_batch_norm) | |||
| self.aspp.add_flags(loop_can_unroll=True) | |||
| atrous_rates_len = 0 | |||
| if atrous_rates is not None: | |||
| atrous_rates_len = len(atrous_rates) | |||
| self.fc1 = _conv_bn_relu(depth * (2 + atrous_rates_len), depth, | |||
| ksize=1, | |||
| stride=1, | |||
| use_batch_statistics=fine_tune_batch_norm) | |||
| self.fc2 = nn.Conv2d(depth, | |||
| num_classes, | |||
| kernel_size=1, | |||
| stride=1, | |||
| has_bias=True) | |||
| self.upsample = P.ResizeBilinear((int(feature_shape[2]), | |||
| int(feature_shape[3])), | |||
| align_corners=True) | |||
| self.samples = [] | |||
| for scale_size in self.scale_sizes: | |||
| self.samples.append(SampleBlock(feature_shape, scale_size)) | |||
| self.samples = nn.CellList(self.samples) | |||
| self.feature_shape = [float(feature_shape[0]), float(feature_shape[1]), float(feature_shape[2]), | |||
| float(feature_shape[3])] | |||
| self.pad = P.Pad(((0, 0), (0, 0), (1, 1), (1, 1))) | |||
| self.dropout = nn.Dropout(keep_prob=0.9) | |||
| self.shape = P.Shape() | |||
| self.decoder_output_stride = decoder_output_stride | |||
| if decoder_output_stride is not None: | |||
| self.decoder = Decoder(low_level_channel=depth, | |||
| channel=depth, | |||
| depth=depth, | |||
| feature_shape=[feature_shape[2], | |||
| feature_shape[3]], | |||
| scale_sizes=self.scale_sizes, | |||
| decoder_output_stride=decoder_output_stride, | |||
| fine_tune_batch_norm=fine_tune_batch_norm) | |||
| def construct(self, x, scale_index=0): | |||
| x = (2.0 / 255.0) * x - 1.0 | |||
| x = self.pad(x) | |||
| low_level_feature, feature_map = self.net(x) | |||
| for scale_size in self.scale_sizes: | |||
| if scale_size * self.feature_shape[2] + 1.0 >= self.shape(x)[2] - 2: | |||
| output = self.aspp(feature_map, scale_index) | |||
| output = self.fc1(output) | |||
| if self.decoder_output_stride is not None: | |||
| output = self.decoder(output, low_level_feature, scale_index) | |||
| output = self.fc2(output) | |||
| output = self.samples[scale_index](output) | |||
| return output | |||
| scale_index += 1 | |||
| return feature_map | |||
| class SampleBlock(nn.Cell): | |||
| """Sample block.""" | |||
| def __init__(self, | |||
| feature_shape, | |||
| scale_size=1.0): | |||
| super(SampleBlock, self).__init__() | |||
| sample_h = np.ceil(float(feature_shape[2]) * scale_size) | |||
| sample_w = np.ceil(float(feature_shape[3]) * scale_size) | |||
| self.sample = P.ResizeBilinear((int(sample_h), int(sample_w)), align_corners=True) | |||
| def construct(self, x): | |||
| return self.sample(x) | |||
| class DeepLabV3(nn.Cell): | |||
| """DeepLabV3 model.""" | |||
| def __init__(self, num_classes, feature_shape, backbone, channel, depth, infer_scale_sizes, atrous_rates, | |||
| decoder_output_stride, output_stride, fine_tune_batch_norm, image_pyramid): | |||
| super(DeepLabV3, self).__init__() | |||
| self.infer_scale_sizes = [] | |||
| if infer_scale_sizes is not None: | |||
| self.infer_scale_sizes = infer_scale_sizes | |||
| self.infer_scale_sizes = infer_scale_sizes | |||
| if image_pyramid is None: | |||
| image_pyramid = [1.0] | |||
| self.image_pyramid = image_pyramid | |||
| scale_sizes = [] | |||
| for pyramid in image_pyramid: | |||
| scale_sizes.append(pyramid) | |||
| for scale in infer_scale_sizes: | |||
| scale_sizes.append(scale) | |||
| self.samples = [] | |||
| for scale_size in scale_sizes: | |||
| self.samples.append(SampleBlock(feature_shape, scale_size)) | |||
| self.samples = nn.CellList(self.samples) | |||
| self.deeplabv3 = SingleDeepLabV3(num_classes=num_classes, | |||
| feature_shape=feature_shape, | |||
| backbone=resnet50_dl(fine_tune_batch_norm), | |||
| channel=channel, | |||
| depth=depth, | |||
| scale_sizes=scale_sizes, | |||
| atrous_rates=atrous_rates, | |||
| decoder_output_stride=decoder_output_stride, | |||
| output_stride=output_stride, | |||
| fine_tune_batch_norm=fine_tune_batch_norm) | |||
| self.softmax = P.Softmax(axis=1) | |||
| self.concat = P.Concat(axis=2) | |||
| self.expand_dims = P.ExpandDims() | |||
| self.reduce_mean = P.ReduceMean() | |||
| self.sample_common = P.ResizeBilinear((int(feature_shape[2]), | |||
| int(feature_shape[3])), | |||
| align_corners=True) | |||
| def construct(self, x): | |||
| logits = () | |||
| if self.training: | |||
| if len(self.image_pyramid) >= 1: | |||
| if self.image_pyramid[0] == 1: | |||
| logits = self.deeplabv3(x) | |||
| else: | |||
| x1 = self.samples[0](x) | |||
| logits = self.deeplabv3(x1) | |||
| logits = self.sample_common(logits) | |||
| logits = self.expand_dims(logits, 2) | |||
| for i in range(len(self.image_pyramid) - 1): | |||
| x_i = self.samples[i + 1](x) | |||
| logits_i = self.deeplabv3(x_i) | |||
| logits_i = self.sample_common(logits_i) | |||
| logits_i = self.expand_dims(logits_i, 2) | |||
| logits = self.concat((logits, logits_i)) | |||
| logits = self.reduce_mean(logits, 2) | |||
| return logits | |||
| if len(self.infer_scale_sizes) >= 1: | |||
| infer_index = len(self.image_pyramid) | |||
| x1 = self.samples[infer_index](x) | |||
| logits = self.deeplabv3(x1) | |||
| logits = self.sample_common(logits) | |||
| logits = self.softmax(logits) | |||
| logits = self.expand_dims(logits, 2) | |||
| for i in range(len(self.infer_scale_sizes) - 1): | |||
| x_i = self.samples[i + 1 + infer_index](x) | |||
| logits_i = self.deeplabv3(x_i) | |||
| logits_i = self.sample_common(logits_i) | |||
| logits_i = self.softmax(logits_i) | |||
| logits_i = self.expand_dims(logits_i, 2) | |||
| logits = self.concat((logits, logits_i)) | |||
| logits = self.reduce_mean(logits, 2) | |||
| return logits | |||
| def deeplabv3_resnet50(num_classes, feature_shape, image_pyramid, | |||
| infer_scale_sizes, atrous_rates=None, decoder_output_stride=None, | |||
| output_stride=16, fine_tune_batch_norm=False): | |||
| """ | |||
| ResNet50 based DeepLabv3 network. | |||
| Args: | |||
| num_classes (int): Class number. | |||
| feature_shape (list): Input image shape, [N,C,H,W]. | |||
| image_pyramid (list): Input scales for multi-scale feature extraction. | |||
| atrous_rates (list): Atrous rates for atrous spatial pyramid pooling. | |||
| infer_scale_sizes (list): 'The scales to resize images for inference. | |||
| decoder_output_stride (int): 'The ratio of input to output spatial resolution' | |||
| output_stride (int): 'The ratio of input to output spatial resolution.' | |||
| fine_tune_batch_norm (bool): 'Fine tune the batch norm parameters or not' | |||
| Returns: | |||
| Cell, cell instance of ResNet50 based DeepLabv3 neural network. | |||
| Examples: | |||
| >>> deeplabv3_resnet50(100, [1,3,224,224],[1.0],[1.0]) | |||
| """ | |||
| return DeepLabV3(num_classes=num_classes, | |||
| feature_shape=feature_shape, | |||
| backbone=resnet50_dl(fine_tune_batch_norm), | |||
| channel=2048, | |||
| depth=256, | |||
| infer_scale_sizes=infer_scale_sizes, | |||
| atrous_rates=atrous_rates, | |||
| decoder_output_stride=decoder_output_stride, | |||
| output_stride=output_stride, | |||
| fine_tune_batch_norm=fine_tune_batch_norm, | |||
| image_pyramid=image_pyramid) | |||
| @@ -0,0 +1,84 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the License); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # httpwww.apache.orglicensesLICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an AS IS BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Process Dataset.""" | |||
| import abc | |||
| import os | |||
| import time | |||
| from .utils.adapter import get_raw_samples, read_image | |||
| class BaseDataset: | |||
| """ | |||
| Create dataset. | |||
| Args: | |||
| data_url (str): The path of data. | |||
| usage (str): Whether to use train or eval (default='train'). | |||
| Returns: | |||
| Dataset. | |||
| """ | |||
| def __init__(self, data_url, usage): | |||
| self.data_url = data_url | |||
| self.usage = usage | |||
| self.cur_index = 0 | |||
| self.samples = [] | |||
| _s_time = time.time() | |||
| self._load_samples() | |||
| _e_time = time.time() | |||
| print(f"load samples success~, time cost = {_e_time - _s_time}") | |||
| def __getitem__(self, item): | |||
| sample = self.samples[item] | |||
| return self._next_data(sample) | |||
| def __len__(self): | |||
| return len(self.samples) | |||
| @staticmethod | |||
| def _next_data(sample): | |||
| image_path = sample[0] | |||
| mask_image_path = sample[1] | |||
| image = read_image(image_path) | |||
| mask_image = read_image(mask_image_path) | |||
| return [image, mask_image] | |||
| @abc.abstractmethod | |||
| def _load_samples(self): | |||
| pass | |||
| class HwVocRawDataset(BaseDataset): | |||
| """ | |||
| Create dataset with raw data. | |||
| Args: | |||
| data_url (str): The path of data. | |||
| usage (str): Whether to use train or eval (default='train'). | |||
| Returns: | |||
| Dataset. | |||
| """ | |||
| def __init__(self, data_url, usage="train"): | |||
| super().__init__(data_url, usage) | |||
| def _load_samples(self): | |||
| try: | |||
| self.samples = get_raw_samples(os.path.join(self.data_url, self.usage)) | |||
| except Exception as e: | |||
| print("load HwVocRawDataset failed!!!") | |||
| raise e | |||
| @@ -0,0 +1,63 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """OhemLoss.""" | |||
| import mindspore.nn as nn | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import functional as F | |||
| class OhemLoss(nn.Cell): | |||
| """Ohem loss cell.""" | |||
| def __init__(self, num, ignore_label): | |||
| super(OhemLoss, self).__init__() | |||
| self.mul = P.Mul() | |||
| self.shape = P.Shape() | |||
| self.one_hot = nn.OneHot(-1, num, 1.0, 0.0) | |||
| self.squeeze = P.Squeeze() | |||
| self.num = num | |||
| self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() | |||
| self.mean = P.ReduceMean() | |||
| self.select = P.Select() | |||
| self.reshape = P.Reshape() | |||
| self.cast = P.Cast() | |||
| self.not_equal = P.NotEqual() | |||
| self.equal = P.Equal() | |||
| self.reduce_sum = P.ReduceSum(keep_dims=False) | |||
| self.fill = P.Fill() | |||
| self.transpose = P.Transpose() | |||
| self.ignore_label = ignore_label | |||
| self.loss_weight = 1.0 | |||
| def construct(self, logits, labels): | |||
| logits = self.transpose(logits, (0, 2, 3, 1)) | |||
| logits = self.reshape(logits, (-1, self.num)) | |||
| labels = F.cast(labels, mstype.int32) | |||
| labels = self.reshape(labels, (-1,)) | |||
| one_hot_labels = self.one_hot(labels) | |||
| losses = self.cross_entropy(logits, one_hot_labels)[0] | |||
| weights = self.cast(self.not_equal(labels, self.ignore_label), mstype.float32) * self.loss_weight | |||
| weighted_losses = self.mul(losses, weights) | |||
| loss = self.reduce_sum(weighted_losses, (0,)) | |||
| zeros = self.fill(mstype.float32, self.shape(weights), 0.0) | |||
| ones = self.fill(mstype.float32, self.shape(weights), 1.0) | |||
| present = self.select(self.equal(weights, zeros), zeros, ones) | |||
| present = self.reduce_sum(present, (0,)) | |||
| zeros = self.fill(mstype.float32, self.shape(present), 0.0) | |||
| min_control = self.fill(mstype.float32, self.shape(present), 1.0) | |||
| present = self.select(self.equal(present, zeros), min_control, present) | |||
| loss = loss / present | |||
| return loss | |||
| @@ -0,0 +1,116 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the License); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # httpwww.apache.orglicensesLICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an AS IS BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Dataset module.""" | |||
| from PIL import Image | |||
| import mindspore.dataset as de | |||
| import mindspore.dataset.transforms.vision.c_transforms as C | |||
| import numpy as np | |||
| from .ei_dataset import HwVocRawDataset | |||
| from .utils import custom_transforms as tr | |||
| class DataTransform: | |||
| """Transform dataset for DeepLabV3.""" | |||
| def __init__(self, args, usage): | |||
| self.args = args | |||
| self.usage = usage | |||
| def __call__(self, image, label): | |||
| if self.usage == "train": | |||
| return self._train(image, label) | |||
| if self.usage == "eval": | |||
| return self._eval(image, label) | |||
| return None | |||
| def _train(self, image, label): | |||
| """ | |||
| Process training data. | |||
| Args: | |||
| image (list): Image data. | |||
| label (list): Dataset label. | |||
| """ | |||
| image = Image.fromarray(image) | |||
| label = Image.fromarray(label) | |||
| rsc_tr = tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size) | |||
| image, label = rsc_tr(image, label) | |||
| rhf_tr = tr.RandomHorizontalFlip() | |||
| image, label = rhf_tr(image, label) | |||
| image = np.array(image).astype(np.float32) | |||
| label = np.array(label).astype(np.float32) | |||
| return image, label | |||
| def _eval(self, image, label): | |||
| """ | |||
| Process eval data. | |||
| Args: | |||
| image (list): Image data. | |||
| label (list): Dataset label. | |||
| """ | |||
| image = Image.fromarray(image) | |||
| label = Image.fromarray(label) | |||
| fsc_tr = tr.FixScaleCrop(crop_size=self.args.crop_size) | |||
| image, label = fsc_tr(image, label) | |||
| image = np.array(image).astype(np.float32) | |||
| label = np.array(label).astype(np.float32) | |||
| return image, label | |||
| def create_dataset(args, data_url, epoch_num=1, batch_size=1, usage="train", shuffle=True): | |||
| """ | |||
| Create Dataset for DeepLabV3. | |||
| Args: | |||
| args (dict): Train parameters. | |||
| data_url (str): Dataset path. | |||
| epoch_num (int): Epoch of dataset (default=1). | |||
| batch_size (int): Batch size of dataset (default=1). | |||
| usage (str): Whether is use to train or eval (default='train'). | |||
| Returns: | |||
| Dataset. | |||
| """ | |||
| # create iter dataset | |||
| dataset = HwVocRawDataset(data_url, usage=usage) | |||
| dataset_len = len(dataset) | |||
| # wrapped with GeneratorDataset | |||
| dataset = de.GeneratorDataset(dataset, ["image", "label"], sampler=None) | |||
| dataset.set_dataset_size(dataset_len) | |||
| dataset = dataset.map(input_columns=["image", "label"], operations=DataTransform(args, usage=usage)) | |||
| channelswap_op = C.HWC2CHW() | |||
| dataset = dataset.map(input_columns="image", operations=channelswap_op) | |||
| # 1464 samples / batch_size 8 = 183 batches | |||
| # epoch_num is num of steps | |||
| # 3658 steps / 183 = 20 epochs | |||
| if usage == "train" and shuffle: | |||
| dataset = dataset.shuffle(1464) | |||
| dataset = dataset.batch(batch_size, drop_remainder=(usage == "train")) | |||
| dataset = dataset.repeat(count=epoch_num) | |||
| dataset.map_model = 4 | |||
| return dataset | |||
| @@ -0,0 +1,72 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """mIou.""" | |||
| import numpy as np | |||
| from mindspore.nn.metrics.metric import Metric | |||
| def confuse_matrix(target, pred, n): | |||
| k = (target >= 0) & (target < n) | |||
| return np.bincount(n * target[k].astype(int) + pred[k], minlength=n ** 2).reshape(n, n) | |||
| def iou(hist): | |||
| denominator = hist.sum(1) + hist.sum(0) - np.diag(hist) | |||
| res = np.diag(hist) / np.where(denominator > 0, denominator, 1) | |||
| res = np.sum(res) / np.count_nonzero(denominator) | |||
| return res | |||
| class MiouPrecision(Metric): | |||
| """Calculate miou precision.""" | |||
| def __init__(self, num_class=21): | |||
| super(MiouPrecision, self).__init__() | |||
| if not isinstance(num_class, int): | |||
| raise TypeError('num_class should be integer type, but got {}'.format(type(num_class))) | |||
| if num_class < 1: | |||
| raise ValueError('num_class must be at least 1, but got {}'.format(num_class)) | |||
| self._num_class = num_class | |||
| self._mIoU = [] | |||
| self.clear() | |||
| def clear(self): | |||
| self._hist = np.zeros((self._num_class, self._num_class)) | |||
| self._mIoU = [] | |||
| def update(self, *inputs): | |||
| if len(inputs) != 2: | |||
| raise ValueError('Need 2 inputs (y_pred, y), but got {}'.format(len(inputs))) | |||
| predict_in = self._convert_data(inputs[0]) | |||
| label_in = self._convert_data(inputs[1]) | |||
| if predict_in.shape[1] != self._num_class: | |||
| raise ValueError('Class number not match, last input data contain {} classes, but current data contain {} ' | |||
| 'classes'.format(self._num_class, predict_in.shape[1])) | |||
| pred = np.argmax(predict_in, axis=1) | |||
| label = label_in | |||
| if len(label.flatten()) != len(pred.flatten()): | |||
| print('Skipping: len(gt) = {:d}, len(pred) = {:d}'.format(len(label.flatten()), len(pred.flatten()))) | |||
| raise ValueError('Class number not match, last input data contain {} classes, but current data contain {} ' | |||
| 'classes'.format(self._num_class, predict_in.shape[1])) | |||
| self._hist = confuse_matrix(label.flatten(), pred.flatten(), self._num_class) | |||
| mIoUs = iou(self._hist) | |||
| self._mIoU.append(mIoUs) | |||
| def eval(self): | |||
| """ | |||
| Computes the mIoU categorical accuracy. | |||
| """ | |||
| mIoU = np.nanmean(self._mIoU) | |||
| print('mIoU = {}'.format(mIoU)) | |||
| return mIoU | |||
| @@ -0,0 +1,14 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| @@ -0,0 +1,67 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the License); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # httpwww.apache.orglicensesLICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an AS IS BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Adapter dataset.""" | |||
| import fnmatch | |||
| import io | |||
| import os | |||
| import numpy as np | |||
| from PIL import Image | |||
| from ..utils import file_io | |||
| def get_raw_samples(data_url): | |||
| """ | |||
| Get dataset from raw data. | |||
| Args: | |||
| data_url (str): Dataset path. | |||
| Returns: | |||
| list, a file list. | |||
| """ | |||
| def _list_files(dir_path, pattern): | |||
| full_files = [] | |||
| _, _, files = next(file_io.walk(dir_path)) | |||
| for f in files: | |||
| if fnmatch.fnmatch(f.lower(), pattern.lower()): | |||
| full_files.append(os.path.join(dir_path, f)) | |||
| return full_files | |||
| img_files = _list_files(os.path.join(data_url, "Images"), "*.jpg") | |||
| seg_files = _list_files(os.path.join(data_url, "SegmentationClassRaw"), "*.png") | |||
| files = [] | |||
| for img_file in img_files: | |||
| _, file_name = os.path.split(img_file) | |||
| name, _ = os.path.splitext(file_name) | |||
| seg_file = os.path.join(data_url, "SegmentationClassRaw", ".".join([name, "png"])) | |||
| if seg_file in seg_files: | |||
| files.append([img_file, seg_file]) | |||
| return files | |||
| def read_image(img_path): | |||
| """ | |||
| Read image from file. | |||
| Args: | |||
| img_path (str): image path. | |||
| """ | |||
| img = file_io.read(img_path.strip(), binary=True) | |||
| data = io.BytesIO(img) | |||
| img = Image.open(data) | |||
| return np.array(img) | |||
| @@ -0,0 +1,149 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the License); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # httpwww.apache.orglicensesLICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an AS IS BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """Random process dataset.""" | |||
| import random | |||
| import numpy as np | |||
| from PIL import Image, ImageOps, ImageFilter | |||
| class Normalize: | |||
| """Normalize a tensor image with mean and standard deviation. | |||
| Args: | |||
| mean (tuple): means for each channel. | |||
| std (tuple): standard deviations for each channel. | |||
| """ | |||
| def __init__(self, mean=(0., 0., 0.), std=(1., 1., 1.)): | |||
| self.mean = mean | |||
| self.std = std | |||
| def __call__(self, img, mask): | |||
| img = np.array(img).astype(np.float32) | |||
| mask = np.array(mask).astype(np.float32) | |||
| img = ((img - self.mean) / self.std).astype(np.float32) | |||
| return img, mask | |||
| class RandomHorizontalFlip: | |||
| """Randomly decide whether to horizontal flip.""" | |||
| def __call__(self, img, mask): | |||
| if random.random() < 0.5: | |||
| img = img.transpose(Image.FLIP_LEFT_RIGHT) | |||
| mask = mask.transpose(Image.FLIP_LEFT_RIGHT) | |||
| return img, mask | |||
| class RandomRotate: | |||
| """ | |||
| Randomly decide whether to rotate. | |||
| Args: | |||
| degree (float): The degree of rotate. | |||
| """ | |||
| def __init__(self, degree): | |||
| self.degree = degree | |||
| def __call__(self, img, mask): | |||
| rotate_degree = random.uniform(-1 * self.degree, self.degree) | |||
| img = img.rotate(rotate_degree, Image.BILINEAR) | |||
| mask = mask.rotate(rotate_degree, Image.NEAREST) | |||
| return img, mask | |||
| class RandomGaussianBlur: | |||
| """Randomly decide whether to filter image with gaussian blur.""" | |||
| def __call__(self, img, mask): | |||
| if random.random() < 0.5: | |||
| img = img.filter(ImageFilter.GaussianBlur( | |||
| radius=random.random())) | |||
| return img, mask | |||
| class RandomScaleCrop: | |||
| """Randomly decide whether to scale and crop image.""" | |||
| def __init__(self, base_size, crop_size, fill=0): | |||
| self.base_size = base_size | |||
| self.crop_size = crop_size | |||
| self.fill = fill | |||
| def __call__(self, img, mask): | |||
| # random scale (short edge) | |||
| short_size = random.randint(int(self.base_size * 0.5), int(self.base_size * 2.0)) | |||
| w, h = img.size | |||
| if h > w: | |||
| ow = short_size | |||
| oh = int(1.0 * h * ow / w) | |||
| else: | |||
| oh = short_size | |||
| ow = int(1.0 * w * oh / h) | |||
| img = img.resize((ow, oh), Image.BILINEAR) | |||
| mask = mask.resize((ow, oh), Image.NEAREST) | |||
| # pad crop | |||
| if short_size < self.crop_size: | |||
| padh = self.crop_size - oh if oh < self.crop_size else 0 | |||
| padw = self.crop_size - ow if ow < self.crop_size else 0 | |||
| img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0) | |||
| mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=self.fill) | |||
| # random crop crop_size | |||
| w, h = img.size | |||
| x1 = random.randint(0, w - self.crop_size) | |||
| y1 = random.randint(0, h - self.crop_size) | |||
| img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) | |||
| mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) | |||
| return img, mask | |||
| class FixScaleCrop: | |||
| """Scale and crop image with fixing size.""" | |||
| def __init__(self, crop_size): | |||
| self.crop_size = crop_size | |||
| def __call__(self, img, mask): | |||
| w, h = img.size | |||
| if w > h: | |||
| oh = self.crop_size | |||
| ow = int(1.0 * w * oh / h) | |||
| else: | |||
| ow = self.crop_size | |||
| oh = int(1.0 * h * ow / w) | |||
| img = img.resize((ow, oh), Image.BILINEAR) | |||
| mask = mask.resize((ow, oh), Image.NEAREST) | |||
| # center crop | |||
| w, h = img.size | |||
| x1 = int(round((w - self.crop_size) / 2.)) | |||
| y1 = int(round((h - self.crop_size) / 2.)) | |||
| img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) | |||
| mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) | |||
| return img, mask | |||
| class FixedResize: | |||
| """Resize image with fixing size.""" | |||
| def __init__(self, size): | |||
| self.size = (size, size) | |||
| def __call__(self, img, mask): | |||
| assert img.size == mask.size | |||
| img = img.resize(self.size, Image.BILINEAR) | |||
| mask = mask.resize(self.size, Image.NEAREST) | |||
| return img, mask | |||
| @@ -0,0 +1,36 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """File operation module.""" | |||
| import os | |||
| def _is_obs(url): | |||
| return url.startswith("obs://") or url.startswith("s3://") | |||
| def read(url, binary=False): | |||
| if _is_obs(url): | |||
| # TODO read cloud file. | |||
| return None | |||
| with open(url, "rb" if binary else "r") as f: | |||
| return f.read() | |||
| def walk(url): | |||
| if _is_obs(url): | |||
| # TODO read cloud file. | |||
| return None | |||
| return os.walk(url) | |||
| @@ -0,0 +1,102 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """train.""" | |||
| import argparse | |||
| import time | |||
| import pytest | |||
| import numpy as np | |||
| from mindspore import context, Tensor | |||
| from mindspore.nn.optim.momentum import Momentum | |||
| from mindspore import Model | |||
| from mindspore.train.callback import Callback | |||
| from src.md_dataset import create_dataset | |||
| from src.losses import OhemLoss | |||
| from src.deeplabv3 import deeplabv3_resnet50 | |||
| from src.config import config | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| #--train | |||
| #--eval | |||
| # --Images | |||
| # --2008_001135.jpg | |||
| # --2008_001404.jpg | |||
| # --SegmentationClassRaw | |||
| # --2008_001135.png | |||
| # --2008_001404.png | |||
| data_url = "/home/workspace/mindspore_dataset/voc/voc2012" | |||
| class LossCallBack(Callback): | |||
| """ | |||
| Monitor the loss in training. | |||
| Note: | |||
| if per_print_times is 0 do not print loss. | |||
| Args: | |||
| per_print_times (int): Print loss every times. Default: 1. | |||
| """ | |||
| def __init__(self, data_size, per_print_times=1): | |||
| super(LossCallBack, self).__init__() | |||
| if not isinstance(per_print_times, int) or per_print_times < 0: | |||
| raise ValueError("print_step must be int and >= 0") | |||
| self.data_size = data_size | |||
| self._per_print_times = per_print_times | |||
| self.time = 1000 | |||
| self.loss = 0 | |||
| def epoch_begin(self, run_context): | |||
| self.epoch_time = time.time() | |||
| def step_end(self, run_context): | |||
| cb_params = run_context.original_args() | |||
| epoch_mseconds = (time.time() - self.epoch_time) * 1000 | |||
| self.time = epoch_mseconds / self.data_size | |||
| self.loss = cb_params.net_outputs | |||
| print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num, | |||
| str(cb_params.net_outputs))) | |||
| def model_fine_tune(train_net, fix_weight_layer): | |||
| for para in train_net.trainable_params(): | |||
| para.set_parameter_data(Tensor(np.ones(para.data.shape).astype(np.float32) * 0.02)) | |||
| if fix_weight_layer in para.name: | |||
| para.requires_grad = False | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_deeplabv3_1p(): | |||
| start_time = time.time() | |||
| epoch_size = 100 | |||
| args_opt = argparse.Namespace(base_size=513, crop_size=513, batch_size=2) | |||
| args_opt.base_size = config.crop_size | |||
| args_opt.crop_size = config.crop_size | |||
| args_opt.batch_size = config.batch_size | |||
| train_dataset = create_dataset(args_opt, data_url, epoch_size, config.batch_size, | |||
| usage="eval") | |||
| dataset_size = train_dataset.get_dataset_size() | |||
| callback = LossCallBack(dataset_size) | |||
| net = deeplabv3_resnet50(config.seg_num_classes, [config.batch_size, 3, args_opt.crop_size, args_opt.crop_size], | |||
| infer_scale_sizes=config.eval_scales, atrous_rates=config.atrous_rates, | |||
| decoder_output_stride=config.decoder_output_stride, output_stride=config.output_stride, | |||
| fine_tune_batch_norm=config.fine_tune_batch_norm, image_pyramid=config.image_pyramid) | |||
| net.set_train() | |||
| model_fine_tune(net, 'layer') | |||
| loss = OhemLoss(config.seg_num_classes, config.ignore_label) | |||
| opt = Momentum(filter(lambda x: 'beta' not in x.name and 'gamma' not in x.name and 'depth' not in x.name and 'bias' not in x.name, net.trainable_params()), learning_rate=config.learning_rate, momentum=config.momentum, weight_decay=config.weight_decay) | |||
| model = Model(net, loss, opt) | |||
| model.train(epoch_size, train_dataset, callback) | |||
| print(time.time() - start_time) | |||
| print("expect loss: ", callback.loss) | |||
| print("expect time: ", callback.time) | |||
| expect_loss = 0.92 | |||
| expect_time = 40 | |||
| assert callback.loss.asnumpy() <= expect_loss | |||
| assert callback.time <= expect_time | |||