| @@ -0,0 +1,34 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/gpu/cuda_impl/sigmoid_cross_entropy_with_logits_impl.cuh" | |||
| template <typename T, typename S> | |||
| __global__ void SigmoidCrossEntropyWithLogitsKernel(const size_t size, const T *logits, const S *labels, T *outputs) { | |||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) { | |||
| const T reverse_factor = static_cast<T>(logits[i] >= 0); | |||
| outputs[i] = log1p(exp(logits[i] - 2 * reverse_factor * logits[i])) - logits[i] * (labels[i] - reverse_factor); | |||
| } | |||
| } | |||
| template <typename T, typename S> | |||
| void SigmoidCrossEntropyWithLogits(const size_t size, const T *logits, const S *labels, T *outputs, | |||
| cudaStream_t cuda_stream) { | |||
| SigmoidCrossEntropyWithLogitsKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, logits, labels, outputs); | |||
| } | |||
| template void SigmoidCrossEntropyWithLogits<float, float>(const size_t size, const float *logits, const float *labels, | |||
| float *outputs, cudaStream_t cuda_stream); | |||
| @@ -0,0 +1,25 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_IMPL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_IMPL_H_ | |||
| #include "device/gpu/cuda_common.h" | |||
| template <typename T, typename S> | |||
| void SigmoidCrossEntropyWithLogits(const size_t size, const T *logits, const S *labels, T *outputs, | |||
| cudaStream_t cuda_stream); | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_IMPL_H_ | |||
| @@ -0,0 +1,26 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/gpu/nn/sigmoid_cross_entropy_with_logits_gpu_kernel.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| MS_REG_GPU_KERNEL_TWO( | |||
| SigmoidCrossEntropyWithLogits, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| SigmoidCrossEntropyWithLogitsGpuKernel, float, float) | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,97 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include "kernel/gpu/gpu_kernel.h" | |||
| #include "kernel/gpu/gpu_kernel_factory.h" | |||
| #include "kernel/gpu/cuda_impl/sigmoid_cross_entropy_with_logits_impl.cuh" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| template <typename T, typename S> | |||
| class SigmoidCrossEntropyWithLogitsGpuKernel : public GpuKernel { | |||
| public: | |||
| SigmoidCrossEntropyWithLogitsGpuKernel() : logits_size_(0), labels_size_(0), outputs_size_(0) {} | |||
| ~SigmoidCrossEntropyWithLogitsGpuKernel() override = default; | |||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||
| T *logits_addr = GetDeviceAddress<T>(inputs, 0); | |||
| S *labels_addr = GetDeviceAddress<S>(inputs, 1); | |||
| T *outputs_addr = GetDeviceAddress<T>(outputs, 0); | |||
| SigmoidCrossEntropyWithLogits(inputs[0]->size / sizeof(T), logits_addr, labels_addr, outputs_addr, | |||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| } | |||
| bool Init(const CNodePtr &kernel_node) override { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(ERROR) << "Input number is " << input_num << ", but SigmoidCrossEntropyWithLogits needs 2 inputs."; | |||
| return false; | |||
| } | |||
| logits_size_ = sizeof(T); | |||
| labels_size_ = sizeof(S); | |||
| outputs_size_ = sizeof(T); | |||
| auto logits_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < logits_shape.size(); i++) { | |||
| logits_size_ *= logits_shape[i]; | |||
| } | |||
| auto labels_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| for (size_t i = 0; i < labels_shape.size(); i++) { | |||
| labels_size_ *= labels_shape[i]; | |||
| } | |||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < output_shape.size(); i++) { | |||
| outputs_size_ *= output_shape[i]; | |||
| } | |||
| InitSizeLists(); | |||
| return true; | |||
| } | |||
| protected: | |||
| void InitSizeLists() override { | |||
| input_size_list_.push_back(logits_size_); | |||
| input_size_list_.push_back(labels_size_); | |||
| output_size_list_.push_back(outputs_size_); | |||
| } | |||
| private: | |||
| size_t logits_size_; | |||
| size_t labels_size_; | |||
| size_t outputs_size_; | |||
| std::vector<size_t> input_size_list_; | |||
| std::vector<size_t> output_size_list_; | |||
| std::vector<size_t> workspace_size_list_; | |||
| }; | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GPU_KERNEL_H_ | |||
| @@ -0,0 +1,60 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| class NetSigmoidCrossEntropyWithLogits(nn.Cell): | |||
| def __init__(self): | |||
| super(NetSigmoidCrossEntropyWithLogits, self).__init__() | |||
| self.loss = P.SigmoidCrossEntropyWithLogits() | |||
| def construct(self, logits, labels): | |||
| return self.loss(logits, labels) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_sigmoid_cross_entropy_with_logits(): | |||
| logits = Tensor(np.array([[1, 1, 2], | |||
| [1, 2, 1], | |||
| [2, 1, 1]]).astype(np.float32)) | |||
| labels = Tensor(np.array([[0, 0, 1], | |||
| [0, 1, 0], | |||
| [1, 0, 0]]).astype(np.float32)) | |||
| expect_loss = np.array([[1.313262, 1.313262, 0.126928], | |||
| [1.313262, 0.126928, 1.313262], | |||
| [0.126928, 1.313262, 1.313262]]).astype(np.float32) | |||
| error = np.ones(shape=[3, 3]) * 1.0e-6 | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='GPU') | |||
| sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits() | |||
| output = sigmoid_cross_entropy_with_logits(logits, labels) | |||
| diff = output.asnumpy() - expect_loss | |||
| assert np.all(abs(diff) < error) | |||
| context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') | |||
| sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits() | |||
| output = sigmoid_cross_entropy_with_logits(logits, labels) | |||
| diff = output.asnumpy() - expect_loss | |||
| assert np.all(abs(diff) < error) | |||