| @@ -18,6 +18,7 @@ | |||||
| #include <unordered_map> | #include <unordered_map> | ||||
| #include <map> | #include <map> | ||||
| #include <iostream> | #include <iostream> | ||||
| #include <utility> | |||||
| #include <fstream> | #include <fstream> | ||||
| #include "nlohmann/json.hpp" | #include "nlohmann/json.hpp" | ||||
| #include "session/anf_runtime_algorithm.h" | #include "session/anf_runtime_algorithm.h" | ||||
| @@ -583,5 +584,55 @@ void DeduplicateIndexedSlices(const SparseGradient &origin_sparse_grad, SparseGr | |||||
| } | } | ||||
| unique_grad->indices_size_ = unique_indices_size; | unique_grad->indices_size_ = unique_indices_size; | ||||
| } | } | ||||
| void ReduceSparseGradient(const SparseGradient &origin_sparse_grad, SparseGradient *unique_grad, size_t first_dim, | |||||
| size_t outer_dim) { | |||||
| MS_EXCEPTION_IF_NULL(origin_sparse_grad.value_); | |||||
| MS_EXCEPTION_IF_NULL(origin_sparse_grad.indices_); | |||||
| MS_EXCEPTION_IF_NULL(unique_grad); | |||||
| MS_EXCEPTION_IF_NULL(unique_grad->value_); | |||||
| MS_EXCEPTION_IF_NULL(unique_grad->indices_); | |||||
| size_t unique_indices_size = 0; | |||||
| std::vector<std::pair<int, size_t>> sorted_indices; | |||||
| sorted_indices.reserve(origin_sparse_grad.indices_size_); | |||||
| for (size_t i = 0; i < origin_sparse_grad.indices_size_; ++i) { | |||||
| int index = origin_sparse_grad.indices_[i]; | |||||
| if (index < 0 || IntToSize(index) >= first_dim) { | |||||
| continue; | |||||
| } | |||||
| sorted_indices.emplace_back(std::pair<int, size_t>(index, i * outer_dim)); | |||||
| } | |||||
| std::sort( | |||||
| sorted_indices.begin(), sorted_indices.end(), | |||||
| [](const std::pair<int, size_t> &left, const std::pair<int, size_t> &right) { return left.first < right.first; }); | |||||
| int last_index = 0; | |||||
| size_t indices_size = sorted_indices.size(); | |||||
| size_t start_index = 0; | |||||
| size_t end_index = outer_dim; | |||||
| size_t dst_len = indices_size * outer_dim; | |||||
| for (size_t i = 0; i < indices_size; ++i) { | |||||
| int index = sorted_indices[i].first; | |||||
| if (i == 0 || last_index != index) { | |||||
| if (i > 0 && last_index != index) { | |||||
| unique_indices_size++; | |||||
| start_index += outer_dim; | |||||
| end_index += outer_dim; | |||||
| } | |||||
| unique_grad->indices_[unique_indices_size] = index; | |||||
| auto ret_code = memcpy_s(unique_grad->value_ + start_index, dst_len - start_index, | |||||
| origin_sparse_grad.value_ + sorted_indices[i].second, outer_dim); | |||||
| if (ret_code != EOK) { | |||||
| MS_LOG(EXCEPTION) << "Failed to copy data!"; | |||||
| } | |||||
| } else { | |||||
| for (size_t j = start_index, k = sorted_indices[i].second; j < end_index; ++j, ++k) { | |||||
| unique_grad->value_[j] += origin_sparse_grad.value_[k]; | |||||
| } | |||||
| } | |||||
| last_index = index; | |||||
| } | |||||
| unique_grad->indices_size_ = unique_indices_size; | |||||
| } | |||||
| } // namespace kernel | } // namespace kernel | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -92,6 +92,8 @@ bool IsSameShape(const std::vector<size_t> &shape_a, const std::vector<size_t> & | |||||
| int Sign(float x); | int Sign(float x); | ||||
| void DeduplicateIndexedSlices(const SparseGradient &origin_sparse_grad, SparseGradient *unique_grad, size_t first_dim, | void DeduplicateIndexedSlices(const SparseGradient &origin_sparse_grad, SparseGradient *unique_grad, size_t first_dim, | ||||
| size_t outer_dim); | size_t outer_dim); | ||||
| void ReduceSparseGradient(const SparseGradient &origin_sparse_grad, SparseGradient *unique_grad, size_t first_dim, | |||||
| size_t outer_dim); | |||||
| } // namespace kernel | } // namespace kernel | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -37,8 +37,8 @@ void CPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) { | |||||
| } | } | ||||
| void CPUKernel::Init(const CNodePtr &kernel_node) { | void CPUKernel::Init(const CNodePtr &kernel_node) { | ||||
| InitInputOutputSize(kernel_node); | |||||
| InitKernel(kernel_node); | InitKernel(kernel_node); | ||||
| InitInputOutputSize(kernel_node); | |||||
| } | } | ||||
| void CPUKernelUtils::ExpandDimsTo4(std::vector<size_t> *shape) { | void CPUKernelUtils::ExpandDimsTo4(std::vector<size_t> *shape) { | ||||
| @@ -23,6 +23,13 @@ namespace { | |||||
| constexpr size_t kSparseApplyFtrlInputSize = 5; | constexpr size_t kSparseApplyFtrlInputSize = 5; | ||||
| } // namespace | } // namespace | ||||
| void SparseApplyFtrlCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) { | |||||
| CPUKernel::InitInputOutputSize(kernel_node); | |||||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||||
| workspace_size_list_.emplace_back(indices_size_ * var_outer_dim_size_ * sizeof(float)); | |||||
| workspace_size_list_.emplace_back(indices_size_ * sizeof(int)); | |||||
| } | |||||
| void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) { | void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) { | ||||
| MS_EXCEPTION_IF_NULL(kernel_node); | MS_EXCEPTION_IF_NULL(kernel_node); | ||||
| std::vector<size_t> var_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | std::vector<size_t> var_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | ||||
| @@ -72,7 +79,7 @@ void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||||
| } | } | ||||
| bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | ||||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||||
| const std::vector<kernel::AddressPtr> &workspace, | |||||
| const std::vector<kernel::AddressPtr> & /*outputs*/) { | const std::vector<kernel::AddressPtr> & /*outputs*/) { | ||||
| if (inputs.size() < kSparseApplyFtrlInputSize) { | if (inputs.size() < kSparseApplyFtrlInputSize) { | ||||
| MS_LOG(EXCEPTION) << "error input output size!"; | MS_LOG(EXCEPTION) << "error input output size!"; | ||||
| @@ -83,14 +90,11 @@ bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inp | |||||
| auto linear = reinterpret_cast<float *>(inputs[2]->addr); | auto linear = reinterpret_cast<float *>(inputs[2]->addr); | ||||
| auto grad = reinterpret_cast<float *>(inputs[3]->addr); | auto grad = reinterpret_cast<float *>(inputs[3]->addr); | ||||
| auto indices = reinterpret_cast<int *>(inputs[4]->addr); | auto indices = reinterpret_cast<int *>(inputs[4]->addr); | ||||
| std::vector<float> new_grad; | |||||
| new_grad.reserve(indices_size_ * var_outer_dim_size_); | |||||
| std::vector<int> new_indices; | |||||
| new_indices.reserve(indices_size_); | |||||
| SparseGradient unique_sparse_grad({new_grad.data(), new_indices.data(), indices_size_}); | |||||
| DeduplicateIndexedSlices(SparseGradient({grad, indices, indices_size_}), &unique_sparse_grad, var_first_dim_size_, | |||||
| var_outer_dim_size_); | |||||
| auto new_grad = reinterpret_cast<float *>(workspace[0]->addr); | |||||
| auto new_indices = reinterpret_cast<int *>(workspace[1]->addr); | |||||
| SparseGradient unique_sparse_grad({new_grad, new_indices, indices_size_}); | |||||
| ReduceSparseGradient(SparseGradient({grad, indices, indices_size_}), &unique_sparse_grad, var_first_dim_size_, | |||||
| var_outer_dim_size_); | |||||
| for (size_t i = 0; i < unique_sparse_grad.indices_size_; ++i) { | for (size_t i = 0; i < unique_sparse_grad.indices_size_; ++i) { | ||||
| int index = unique_sparse_grad.indices_[i]; | int index = unique_sparse_grad.indices_[i]; | ||||
| @@ -28,7 +28,7 @@ class SparseApplyFtrlCPUKernel : public CPUKernel { | |||||
| ~SparseApplyFtrlCPUKernel() override = default; | ~SparseApplyFtrlCPUKernel() override = default; | ||||
| void InitKernel(const CNodePtr &kernel_node) override; | void InitKernel(const CNodePtr &kernel_node) override; | ||||
| void InitInputOutputSize(const CNodePtr &kernel_node) override; | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | ||||
| const std::vector<AddressPtr> &outputs) override; | const std::vector<AddressPtr> &outputs) override; | ||||