| @@ -54,12 +54,18 @@ class DropoutGpuFwdKernel : public GpuKernel { | |||
| float *mask_f = GetDeviceAddress<float>(workspace, 0); | |||
| if (!states_init_) { | |||
| curandCreateGenerator(&mask_generator_, CURAND_RNG_PSEUDO_DEFAULT); | |||
| curandSetPseudoRandomGeneratorSeed(mask_generator_, time(NULL)); | |||
| CHECK_CURAND_RET_WITH_EXCEPT(curandCreateGenerator(&mask_generator_, CURAND_RNG_PSEUDO_DEFAULT), | |||
| "Failed to create generator"); | |||
| CHECK_CURAND_RET_WITH_EXCEPT(curandSetPseudoRandomGeneratorSeed(mask_generator_, time(NULL)), | |||
| "Failed to SetPseudoRandomGeneratorSeed"); | |||
| MS_EXCEPTION_IF_NULL(mask_generator_); | |||
| states_init_ = true; | |||
| } | |||
| CHECK_CURAND_RET_WITH_EXCEPT(curandSetStream(mask_generator_, reinterpret_cast<cudaStream_t>(stream_ptr)), | |||
| "Failed to set stream for generator"); | |||
| // curandGen only support float or double for mask. | |||
| curandGenerateUniform(mask_generator_, mask_f, num_count_); | |||
| CHECK_CURAND_RET_WITH_EXCEPT(curandGenerateUniform(mask_generator_, mask_f, num_count_), | |||
| "Failed to generate uniform"); | |||
| DropoutForward(input, mask, output, mask_f, num_count_, keep_prob_, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||
| return true; | |||
| @@ -20,7 +20,9 @@ | |||
| #include <iostream> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| #include <map> | |||
| #include "utils/log_adapter.h" | |||
| #include "include/curand.h" | |||
| namespace mindspore { | |||
| namespace device { | |||
| @@ -131,6 +133,15 @@ inline bool CheckNullInput(std::vector<size_t> input_shape) { | |||
| return false; | |||
| } | |||
| #define CHECK_NULL_INPUT(input_shape) mindspore::device::gpu::CheckNullInput(input_shape) | |||
| #define CHECK_CURAND_RET_WITH_EXCEPT(expression, message) \ | |||
| { \ | |||
| curandStatus_t status = (expression); \ | |||
| if (status != CURAND_STATUS_SUCCESS) { \ | |||
| MS_LOG(EXCEPTION) << "CUAD curand Error: " << message << " | curandStatus: " << status; \ | |||
| } \ | |||
| } | |||
| } // namespace gpu | |||
| } // namespace device | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,54 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops import operations as P | |||
| class Net(nn.Cell): | |||
| def __init__(self, keep_prob): | |||
| super(Net, self).__init__() | |||
| self.drop = P.Dropout(keep_prob) | |||
| def construct(self, x_): | |||
| return self.drop(x_) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_gpu_training | |||
| @pytest.mark.env_onecard | |||
| def test_dropout(): | |||
| x_shape = [32, 16, 2, 5] | |||
| x = np.ones(x_shape).astype(np.float32) | |||
| keep_prob = 0.4 | |||
| dropout = Net(keep_prob) | |||
| tx = Tensor(x) | |||
| output, mask = dropout(tx) | |||
| # check output | |||
| output_np = output.asnumpy() | |||
| elem_count = x.size | |||
| nonzero_count = np.count_nonzero(output_np) | |||
| assert (elem_count * (keep_prob - 0.1)) < nonzero_count < (elem_count * (keep_prob + 0.1)) | |||
| output_sum = np.sum(output_np) | |||
| x_sum = np.sum(x) | |||
| assert abs(output_sum - x_sum)/x_sum < 0.1 | |||
| # check mask | |||
| mask_np = mask.asnumpy() | |||
| mask_sum = np.sum(mask_np) | |||
| assert np.count_nonzero(mask_np) == nonzero_count | |||
| assert abs(mask_sum - nonzero_count)/nonzero_count < 0.1 | |||