|
|
|
@@ -0,0 +1,238 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================== |
|
|
|
""" |
|
|
|
Test Mnist dataset operators |
|
|
|
""" |
|
|
|
import os |
|
|
|
import pytest |
|
|
|
import numpy as np |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
import mindspore.dataset as ds |
|
|
|
from mindspore import log as logger |
|
|
|
|
|
|
|
DATA_DIR = "../data/dataset/testMnistData" |
|
|
|
|
|
|
|
|
|
|
|
def load_mnist(path): |
|
|
|
""" |
|
|
|
load Mnist data |
|
|
|
""" |
|
|
|
labels_path = os.path.join(path, 't10k-labels-idx1-ubyte') |
|
|
|
images_path = os.path.join(path, 't10k-images-idx3-ubyte') |
|
|
|
with open(labels_path, 'rb') as lbpath: |
|
|
|
lbpath.read(8) |
|
|
|
labels = np.fromfile(lbpath, dtype=np.uint8) |
|
|
|
with open(images_path, 'rb') as imgpath: |
|
|
|
imgpath.read(16) |
|
|
|
images = np.fromfile(imgpath, dtype=np.uint8) |
|
|
|
images = images.reshape(-1, 28, 28, 1) |
|
|
|
images[images > 0] = 255 # Perform binarization to maintain consistency with our API |
|
|
|
return images, labels |
|
|
|
|
|
|
|
|
|
|
|
def visualize_dataset(images, labels): |
|
|
|
""" |
|
|
|
Helper function to visualize the dataset samples |
|
|
|
""" |
|
|
|
num_samples = len(images) |
|
|
|
for i in range(num_samples): |
|
|
|
plt.subplot(1, num_samples, i + 1) |
|
|
|
plt.imshow(images[i].squeeze(), cmap=plt.cm.gray) |
|
|
|
plt.title(labels[i]) |
|
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
def test_mnist_content_check(): |
|
|
|
""" |
|
|
|
Validate MnistDataset image readings |
|
|
|
""" |
|
|
|
logger.info("Test MnistDataset Op with content check") |
|
|
|
data1 = ds.MnistDataset(DATA_DIR, num_samples=100, shuffle=False) |
|
|
|
images, labels = load_mnist(DATA_DIR) |
|
|
|
num_iter = 0 |
|
|
|
# in this example, each dictionary has keys "image" and "label" |
|
|
|
image_list, label_list = [], [] |
|
|
|
for i, data in enumerate(data1.create_dict_iterator()): |
|
|
|
image_list.append(data["image"]) |
|
|
|
label_list.append("label {}".format(data["label"])) |
|
|
|
np.testing.assert_array_equal(data["image"], images[i]) |
|
|
|
np.testing.assert_array_equal(data["label"], labels[i]) |
|
|
|
num_iter += 1 |
|
|
|
assert num_iter == 100 |
|
|
|
|
|
|
|
|
|
|
|
def test_mnist_basic(): |
|
|
|
""" |
|
|
|
Validate MnistDataset |
|
|
|
""" |
|
|
|
logger.info("Test MnistDataset Op") |
|
|
|
|
|
|
|
# case 1: test loading whole dataset |
|
|
|
data1 = ds.MnistDataset(DATA_DIR) |
|
|
|
num_iter1 = 0 |
|
|
|
for _ in data1.create_dict_iterator(): |
|
|
|
num_iter1 += 1 |
|
|
|
assert num_iter1 == 10000 |
|
|
|
|
|
|
|
# case 2: test num_samples |
|
|
|
data2 = ds.MnistDataset(DATA_DIR, num_samples=500) |
|
|
|
num_iter2 = 0 |
|
|
|
for _ in data2.create_dict_iterator(): |
|
|
|
num_iter2 += 1 |
|
|
|
assert num_iter2 == 500 |
|
|
|
|
|
|
|
# case 3: test repeat |
|
|
|
data3 = ds.MnistDataset(DATA_DIR, num_samples=200) |
|
|
|
data3 = data3.repeat(5) |
|
|
|
num_iter3 = 0 |
|
|
|
for _ in data3.create_dict_iterator(): |
|
|
|
num_iter3 += 1 |
|
|
|
assert num_iter3 == 1000 |
|
|
|
|
|
|
|
# case 4: test batch with drop_remainder=False |
|
|
|
data4 = ds.MnistDataset(DATA_DIR, num_samples=100) |
|
|
|
assert data4.get_dataset_size() == 100 |
|
|
|
assert data4.get_batch_size() == 1 |
|
|
|
data4 = data4.batch(batch_size=7) # drop_remainder is default to be False |
|
|
|
assert data4.get_dataset_size() == 15 |
|
|
|
assert data4.get_batch_size() == 7 |
|
|
|
num_iter4 = 0 |
|
|
|
for _ in data4.create_dict_iterator(): |
|
|
|
num_iter4 += 1 |
|
|
|
assert num_iter4 == 15 |
|
|
|
|
|
|
|
# case 5: test batch with drop_remainder=True |
|
|
|
data5 = ds.MnistDataset(DATA_DIR, num_samples=100) |
|
|
|
assert data5.get_dataset_size() == 100 |
|
|
|
assert data5.get_batch_size() == 1 |
|
|
|
data5 = data5.batch(batch_size=7, drop_remainder=True) # the rest of incomplete batch will be dropped |
|
|
|
assert data5.get_dataset_size() == 14 |
|
|
|
assert data5.get_batch_size() == 7 |
|
|
|
num_iter5 = 0 |
|
|
|
for _ in data5.create_dict_iterator(): |
|
|
|
num_iter5 += 1 |
|
|
|
assert num_iter5 == 14 |
|
|
|
|
|
|
|
|
|
|
|
def test_mnist_pk_sampler(): |
|
|
|
""" |
|
|
|
Test MnistDataset with PKSampler |
|
|
|
""" |
|
|
|
logger.info("Test MnistDataset Op with PKSampler") |
|
|
|
golden = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, |
|
|
|
5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9] |
|
|
|
sampler = ds.PKSampler(3) |
|
|
|
data = ds.MnistDataset(DATA_DIR, sampler=sampler) |
|
|
|
num_iter = 0 |
|
|
|
label_list = [] |
|
|
|
for item in data.create_dict_iterator(): |
|
|
|
label_list.append(item["label"]) |
|
|
|
num_iter += 1 |
|
|
|
np.testing.assert_array_equal(golden, label_list) |
|
|
|
assert num_iter == 30 |
|
|
|
|
|
|
|
|
|
|
|
def test_mnist_sequential_sampler(): |
|
|
|
""" |
|
|
|
Test MnistDataset with SequentialSampler |
|
|
|
""" |
|
|
|
logger.info("Test MnistDataset Op with SequentialSampler") |
|
|
|
num_samples = 50 |
|
|
|
sampler = ds.SequentialSampler(num_samples=num_samples) |
|
|
|
data1 = ds.MnistDataset(DATA_DIR, sampler=sampler) |
|
|
|
data2 = ds.MnistDataset(DATA_DIR, shuffle=False, num_samples=num_samples) |
|
|
|
label_list1, label_list2 = [], [] |
|
|
|
num_iter = 0 |
|
|
|
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): |
|
|
|
label_list1.append(item1["label"]) |
|
|
|
label_list2.append(item2["label"]) |
|
|
|
num_iter += 1 |
|
|
|
np.testing.assert_array_equal(label_list1, label_list2) |
|
|
|
assert num_iter == num_samples |
|
|
|
|
|
|
|
|
|
|
|
def test_mnist_exception(): |
|
|
|
""" |
|
|
|
Test error cases for MnistDataset |
|
|
|
""" |
|
|
|
logger.info("Test error cases for MnistDataset") |
|
|
|
error_msg_1 = "sampler and shuffle cannot be specified at the same time" |
|
|
|
with pytest.raises(RuntimeError, match=error_msg_1): |
|
|
|
ds.MnistDataset(DATA_DIR, shuffle=False, sampler=ds.PKSampler(3)) |
|
|
|
|
|
|
|
error_msg_2 = "sampler and sharding cannot be specified at the same time" |
|
|
|
with pytest.raises(RuntimeError, match=error_msg_2): |
|
|
|
ds.MnistDataset(DATA_DIR, sampler=ds.PKSampler(3), num_shards=2, shard_id=0) |
|
|
|
|
|
|
|
error_msg_3 = "num_shards is specified and currently requires shard_id as well" |
|
|
|
with pytest.raises(RuntimeError, match=error_msg_3): |
|
|
|
ds.MnistDataset(DATA_DIR, num_shards=10) |
|
|
|
|
|
|
|
error_msg_4 = "shard_id is specified but num_shards is not" |
|
|
|
with pytest.raises(RuntimeError, match=error_msg_4): |
|
|
|
ds.MnistDataset(DATA_DIR, shard_id=0) |
|
|
|
|
|
|
|
error_msg_5 = "Input shard_id is not within the required interval" |
|
|
|
with pytest.raises(ValueError, match=error_msg_5): |
|
|
|
ds.MnistDataset(DATA_DIR, num_shards=5, shard_id=-1) |
|
|
|
with pytest.raises(ValueError, match=error_msg_5): |
|
|
|
ds.MnistDataset(DATA_DIR, num_shards=5, shard_id=5) |
|
|
|
with pytest.raises(ValueError, match=error_msg_5): |
|
|
|
ds.MnistDataset(DATA_DIR, num_shards=2, shard_id=5) |
|
|
|
|
|
|
|
error_msg_6 = "num_parallel_workers exceeds" |
|
|
|
with pytest.raises(ValueError, match=error_msg_6): |
|
|
|
ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=0) |
|
|
|
with pytest.raises(ValueError, match=error_msg_6): |
|
|
|
ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=65) |
|
|
|
with pytest.raises(ValueError, match=error_msg_6): |
|
|
|
ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=-2) |
|
|
|
|
|
|
|
error_msg_7 = "Argument shard_id" |
|
|
|
with pytest.raises(TypeError, match=error_msg_7): |
|
|
|
ds.MnistDataset(DATA_DIR, num_shards=2, shard_id="0") |
|
|
|
|
|
|
|
|
|
|
|
def test_mnist_visualize(plot=False): |
|
|
|
""" |
|
|
|
Visualize MnistDataset results |
|
|
|
""" |
|
|
|
logger.info("Test MnistDataset visualization") |
|
|
|
|
|
|
|
data1 = ds.MnistDataset(DATA_DIR, num_samples=10, shuffle=False) |
|
|
|
num_iter = 0 |
|
|
|
image_list, label_list = [], [] |
|
|
|
for item in data1.create_dict_iterator(): |
|
|
|
image = item["image"] |
|
|
|
label = item["label"] |
|
|
|
image_list.append(image) |
|
|
|
label_list.append("label {}".format(label)) |
|
|
|
assert isinstance(image, np.ndarray) |
|
|
|
assert image.shape == (28, 28, 1) |
|
|
|
assert image.dtype == np.uint8 |
|
|
|
assert label.dtype == np.uint32 |
|
|
|
num_iter += 1 |
|
|
|
assert num_iter == 10 |
|
|
|
if plot: |
|
|
|
visualize_dataset(image_list, label_list) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
test_mnist_content_check() |
|
|
|
test_mnist_basic() |
|
|
|
test_mnist_pk_sampler() |
|
|
|
test_mnist_sequential_sampler() |
|
|
|
test_mnist_exception() |
|
|
|
test_mnist_visualize(plot=True) |