| @@ -0,0 +1,28 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/binary_cross_entropy_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(BinaryCrossEntropy, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| BinaryCrossEntropyGpuKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,89 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_KERNEL_H | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class BinaryCrossEntropyGpuKernel : public GpuKernel { | |||||
| public: | |||||
| BinaryCrossEntropyGpuKernel() : input_size_(1), reduction_(1) {} | |||||
| ~BinaryCrossEntropyGpuKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input_x = GetDeviceAddress<T>(inputs, 0); | |||||
| T *input_y = GetDeviceAddress<T>(inputs, 1); | |||||
| T *weight = GetDeviceAddress<T>(inputs, 2); | |||||
| T *loss = GetDeviceAddress<T>(outputs, 0); | |||||
| BinaryCrossEntropyLoss(input_size_, reduction_, input_x, input_y, weight, loss, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| string reduction = GetAttr<string>(kernel_node, "reduction"); | |||||
| if (reduction == "none") { | |||||
| reduction_ = 0; | |||||
| } else if (reduction == "sum") { | |||||
| reduction_ = 2; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| if (reduction_ == 0) { | |||||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| } else { | |||||
| output_size_list_.push_back(sizeof(T)); | |||||
| } | |||||
| } | |||||
| private: | |||||
| size_t input_size_; | |||||
| int reduction_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_H | |||||
| @@ -0,0 +1,30 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/nn/binary_cross_entropy_grad_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(BinaryCrossEntropyGrad, | |||||
| KernelAttr() | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| BinaryCrossEntropyGradGpuKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,90 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||||
| #include <string> | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/loss_with_reduction_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class BinaryCrossEntropyGradGpuKernel : public GpuKernel { | |||||
| public: | |||||
| BinaryCrossEntropyGradGpuKernel() : input_size_(1), reduction_(1) {} | |||||
| ~BinaryCrossEntropyGradGpuKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| T *input_x = GetDeviceAddress<T>(inputs, 0); | |||||
| T *input_y = GetDeviceAddress<T>(inputs, 1); | |||||
| T *dloss = GetDeviceAddress<T>(inputs, 2); | |||||
| T *weight = GetDeviceAddress<T>(inputs, 3); | |||||
| T *dx = GetDeviceAddress<T>(outputs, 0); | |||||
| BinaryCrossEntropyLossGrad(input_size_, reduction_, input_x, input_y, weight, dloss, dx, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| string reduction = GetAttr<string>(kernel_node, "reduction"); | |||||
| if (reduction == "none") { | |||||
| reduction_ = 0; | |||||
| } else if (reduction == "sum") { | |||||
| reduction_ = 2; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| if (reduction_ == 0) { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| output_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| } else { | |||||
| input_size_list_.push_back(sizeof(T)); | |||||
| output_size_list_.push_back(sizeof(T)); | |||||
| } | |||||
| } | |||||
| private: | |||||
| size_t input_size_; | |||||
| int reduction_; | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_BINARY_CROSS_ENTROPY_GRAD_KERNEL_H | |||||
| @@ -0,0 +1,83 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import pytest | |||||
| import mindspore.context as context | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import composite as C | |||||
| from mindspore.ops import operations as P | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, reduction="none"): | |||||
| super(Net, self).__init__() | |||||
| self.BinaryCrossEntropy = P.BinaryCrossEntropy("none") | |||||
| def construct(self, x, y, weight): | |||||
| return self.BinaryCrossEntropy(x, y, weight) | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_binary_cross_entropy_loss(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| weight = np.random.rand(20).astype(np.float32) | |||||
| net = Net() | |||||
| loss = net(Tensor(prediction), Tensor(target), Tensor(weight)) | |||||
| expect = [0.09555826, 1.2861121, 0.03518666, 0.6969416, 0.24313456, 0.99062896, | |||||
| 0.19205657, 0.5465214, 0.36964455, 0.21999404, 2.2953863, 2.2566645, | |||||
| 1.5803775, 1.3266402, 0.9883408, 1.2997618, 0.05439841, 0.14389999, | |||||
| 0.03405444, 0.23934692] | |||||
| assert np.allclose(loss.asnumpy(), expect) | |||||
| class Grad(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(Grad, self).__init__() | |||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.network = network | |||||
| def construct(self, x1, x2, sens, weight): | |||||
| gout = self.grad(self.network)(x1, x2, sens, weight) | |||||
| return gout | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_binary_cross_entropy_loss_grad(): | |||||
| np.random.seed(42) | |||||
| prediction = np.random.rand(20).astype(np.float32) | |||||
| target = np.random.rand(20).astype(np.float32) | |||||
| sens = np.random.rand(20).astype(np.float32) | |||||
| weight = np.random.rand(20).astype(np.float32) | |||||
| grad = Grad(Net()) | |||||
| dx = grad(Tensor(prediction), Tensor(target), Tensor(sens), Tensor(weight)) | |||||
| dx1_expect = [-4.80516590e-02, 2.32625079e+00, 6.38972521e-02, 3.13642323e-01, | |||||
| -1.65661633e-01, -1.71821892e+00, -1.13685496e-01, 1.26669514e+00, | |||||
| 1.47891801e-03, 5.83921909e-01, -2.17992840e+01, 4.21899414e+00, | |||||
| 2.85430793e-02, -3.21346498e+00, -2.22674108e+00, -2.80453944e+00, | |||||
| -1.19787852e-04, 2.48514321e-02, -1.66696273e-02, -2.71965731e-02] | |||||
| assert np.allclose(dx[0].asnumpy(), dx1_expect) | |||||