From: @liubuyu Reviewed-by: Signed-off-by:tags/v1.2.0-rc1
| @@ -19,7 +19,6 @@ import subprocess | |||
| import sys | |||
| import os | |||
| import json | |||
| from mindspore import log as logger | |||
| from .common import check_kernel_info, TBEException | |||
| from .helper import _op_select_format, _check_supported | |||
| @@ -126,11 +125,11 @@ class TbeProcess: | |||
| process_num = os.getenv("MS_BUILD_PROCESS_NUM") | |||
| res = "Success" | |||
| if process_num is None: | |||
| logger.info(f"Using default compile process num {self.default_num}") | |||
| res = "Success, using default build process num: " + str(self.default_num) | |||
| elif process_num.isdigit(): | |||
| if int(process_num) in range(1, 25): | |||
| self.default_num = int(process_num) | |||
| logger.info(f"Using custom compile process num {self.default_num}") | |||
| res = "Success, using custom build process num: " + str(self.default_num) | |||
| else: | |||
| res = "TBEException",\ | |||
| "ERROR: [MS_BUILD_PROCESS_NUM] should be in range(1, 25), but got : " + str(process_num) | |||
| @@ -458,8 +458,7 @@ AnfNodePtr CreateValueNode(const FuncGraphPtr &func_graph, const CNodePtr &dynam | |||
| std::vector<size_t> shape = {t_size, IntToSize(1), n_size}; | |||
| std::vector<int64_t> output_shape = {SizeToLong(t_size), SizeToLong(1), SizeToLong(n_size)}; | |||
| std::vector<int64_t> output_tensor = {(SizeToLong(n_size) + SizeToLong(15)) / SizeToLong(16) * SizeToLong(16) * | |||
| SizeToLong(16) * SizeToLong(t_size)}; | |||
| std::vector<int64_t> output_tensor = {SizeToLong(t_size) * SizeToLong(n_size)}; | |||
| auto tensor = TensorConstructUtils::CreateOnesTensor(kNumberTypeFloat32, output_tensor); | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, output_shape); | |||
| auto kernel_graph = func_graph->cast<KernelGraphPtr>(); | |||
| @@ -554,7 +554,8 @@ std::vector<size_t> AnfRuntimeAlgorithm::GetOutputDeviceShape(const AnfNodePtr & | |||
| if (trans::IsNeedPadding(format, infer_shape.size())) { | |||
| infer_shape = trans::PaddingShapeTo4d(infer_shape, GetOutputReshapeType(node, output_idx)); | |||
| } | |||
| return trans::TransShapeToDevice(infer_shape, format); | |||
| auto dtype = AnfAlgo::GetOutputDeviceDataType(node, output_idx); | |||
| return trans::TransShapeToDevice(infer_shape, format, dtype); | |||
| } | |||
| std::vector<size_t> AnfRuntimeAlgorithm::GetInputDeviceShape(const AnfNodePtr &node, size_t input_idx) { | |||
| @@ -567,7 +568,8 @@ std::vector<size_t> AnfRuntimeAlgorithm::GetInputDeviceShape(const AnfNodePtr &n | |||
| if (trans::IsNeedPadding(format, infer_shape.size())) { | |||
| infer_shape = trans::PaddingShapeTo4d(infer_shape, GetInputReshapeType(node, input_idx)); | |||
| } | |||
| return trans::TransShapeToDevice(infer_shape, format); | |||
| auto dtype = AnfAlgo::GetInputDeviceDataType(node, input_idx); | |||
| return trans::TransShapeToDevice(infer_shape, format, dtype); | |||
| } | |||
| std::vector<Axis> AnfRuntimeAlgorithm::GetInputReshapeType(const AnfNodePtr &node, size_t input_idx) { | |||
| @@ -1612,7 +1614,8 @@ std::vector<size_t> AnfRuntimeAlgorithm::GetInputRealDeviceShapeIfExist(const An | |||
| auto max_shape = GetInputMaxShape(anf_node, index); | |||
| std::transform(max_shape.begin(), max_shape.end(), device_shape.begin(), IntToSize); | |||
| auto format = GetInputFormat(anf_node, index); | |||
| trans::TransShapeToDevice(device_shape, format); | |||
| auto dtype = GetInputDeviceDataType(anf_node, index); | |||
| trans::TransShapeToDevice(device_shape, format, dtype); | |||
| } | |||
| return device_shape; | |||
| } | |||
| @@ -1624,7 +1627,8 @@ std::vector<size_t> AnfRuntimeAlgorithm::GetOutputRealDeviceShapeIfExist(const A | |||
| auto max_shape = GetOutputMaxShape(anf_node, index); | |||
| std::transform(max_shape.begin(), max_shape.end(), device_shape.begin(), IntToSize); | |||
| auto format = GetOutputFormat(anf_node, index); | |||
| trans::TransShapeToDevice(device_shape, format); | |||
| auto dtype = GetOutputDeviceDataType(anf_node, index); | |||
| trans::TransShapeToDevice(device_shape, format, dtype); | |||
| } | |||
| return device_shape; | |||
| } | |||
| @@ -30,9 +30,10 @@ void ReplaceStr(std::string *dest, const std::string &replace, char new_char) { | |||
| bool AscendKernelBuildClient::TbePre() { | |||
| auto res = SendRequest(kTbePre); | |||
| if (res != kSuccess) { | |||
| if (res.find(kSuccess) == res.npos) { | |||
| MS_LOG(EXCEPTION) << "PRE failed, res: " << res; | |||
| } | |||
| MS_LOG(INFO) << "Pre " << res; | |||
| return true; | |||
| } | |||
| @@ -77,6 +78,7 @@ bool AscendKernelBuildClient::TbeWait(int *task_id, std::string *task_result, st | |||
| void AscendKernelBuildClient::TbeReset() { | |||
| // Start compiling.. | |||
| init_flag = false; | |||
| auto res = SendRequest(kTbeReset); | |||
| if (res != kAck) { | |||
| MS_LOG(EXCEPTION) << "TBE/RESET response is: " << res; | |||
| @@ -189,7 +189,7 @@ size_t CubeSizeByType(const TypeId data_type) { | |||
| const size_t default_error = 0; | |||
| auto dt_size = abstract::TypeIdSize(data_type); | |||
| if (dt_size < 1) { | |||
| MS_LOG(ERROR) << "Illegal dtype."; | |||
| MS_LOG(EXCEPTION) << "Illegal dtype."; | |||
| return default_error; | |||
| } else if (dt_size == 1) { | |||
| return kCubeSize * 2; | |||
| @@ -206,14 +206,14 @@ bool CheckDims(const std::vector<size_t> &shape) { | |||
| return true; | |||
| } | |||
| std::vector<size_t> NchwDeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> NchwDeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed."; | |||
| } | |||
| return shape; | |||
| } | |||
| std::vector<size_t> NhwcDeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> NhwcDeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Ccheck dims failed."; | |||
| } | |||
| @@ -225,7 +225,7 @@ std::vector<size_t> NhwcDeviceShape(const std::vector<size_t> &shape) { | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> HwchDeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> HwchDeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed."; | |||
| } | |||
| @@ -237,27 +237,29 @@ std::vector<size_t> HwchDeviceShape(const std::vector<size_t> &shape) { | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> FracZDeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> FracZDeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed."; | |||
| } | |||
| auto kCube = CubeSizeByType(type); | |||
| std::vector<size_t> device_shape; | |||
| const size_t cout16 = ((shape[kN] + kCubeSize - 1) / kCubeSize) * kCubeSize; | |||
| const size_t cin16 = ((shape[kC] + kCubeSize - 1) / kCubeSize) * kCubeSize; | |||
| device_shape.push_back(shape[kH] * shape[kW] * cin16 / kCubeSize); | |||
| device_shape.push_back(cout16 / kCubeSize); | |||
| device_shape.push_back(kCubeSize); | |||
| auto c1 = DivCeil(shape[kC], kCube); | |||
| auto n0 = DivCeil(shape[kN], kCubeSize); | |||
| device_shape.push_back(shape[kH] * shape[kW] * c1); | |||
| device_shape.push_back(n0); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCube); | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> Nc1hwc0DeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> Nc1hwc0DeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed."; | |||
| } | |||
| auto kCube = CubeSizeByType(type); | |||
| std::vector<size_t> device_shape; | |||
| const size_t C1 = (shape[kC] + kCubeSize - 1) / kCubeSize; | |||
| const size_t C0 = kCubeSize; | |||
| const size_t C1 = (shape[kC] + kCube - 1) / kCube; | |||
| const size_t C0 = kCube; | |||
| device_shape.push_back(shape[kN]); | |||
| device_shape.push_back(C1); | |||
| device_shape.push_back(shape[kH]); | |||
| @@ -266,7 +268,7 @@ std::vector<size_t> Nc1hwc0DeviceShape(const std::vector<size_t> &shape) { | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> Ndc1hwc0DeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> Ndc1hwc0DeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| // NCDHW | |||
| if (shape.size() != 5) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed, expect shape dim 5, but got shape dim : " << shape.size(); | |||
| @@ -283,51 +285,54 @@ std::vector<size_t> Ndc1hwc0DeviceShape(const std::vector<size_t> &shape) { | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> Fracz3DDeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> Fracz3DDeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| // NCDHW -> Frac_Z_3D | |||
| if (shape.size() != 5) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed, expect shape dim 5, but got shape dim : " << shape.size(); | |||
| } | |||
| auto kCube = CubeSizeByType(type); | |||
| std::vector<size_t> device_shape; | |||
| const size_t C1 = (shape[1] + kCubeSize - 1) / kCubeSize; | |||
| const size_t C1 = (shape[1] + kCube - 1) / kCube; | |||
| const size_t N1 = (shape[0] + kCubeSize - 1) / kCubeSize; | |||
| device_shape.push_back(shape[2] * C1 * shape[3] * shape[4]); | |||
| device_shape.push_back(N1); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCube); | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> C1hwncoc0DeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> C1hwncoc0DeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed."; | |||
| } | |||
| auto kCube = CubeSizeByType(type); | |||
| std::vector<size_t> device_shape; | |||
| device_shape.push_back((shape[kC] - 1) / kCubeSize + 1); | |||
| device_shape.push_back((shape[kC] - 1) / kCube + 1); | |||
| device_shape.push_back(shape[kH]); | |||
| device_shape.push_back(shape[kW]); | |||
| device_shape.push_back(shape[kN]); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCube); | |||
| device_shape.push_back(kCube); | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> FracZc04DeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> FracZc04DeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed."; | |||
| } | |||
| auto kCube = CubeSizeByType(type); | |||
| std::vector<size_t> device_shape; | |||
| const size_t c0 = 4; | |||
| auto first_dim = DivCeil(c0 * shape[kH] * shape[kW], kCubeSize); | |||
| auto no = DivCeil(shape.at(kN), kCubeSize); | |||
| auto first_dim = DivCeil(c0 * shape[kH] * shape[kW], kCube); | |||
| auto no = DivCeil(shape.at(kN), kCube); | |||
| device_shape.push_back(first_dim); | |||
| device_shape.push_back(no); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCube); | |||
| device_shape.push_back(kCube); | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> Nc1hwc04DeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> Nc1hwc04DeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (!CheckDims(shape)) { | |||
| MS_LOG(EXCEPTION) << "Check dims failed."; | |||
| } | |||
| @@ -342,7 +347,7 @@ std::vector<size_t> Nc1hwc04DeviceShape(const std::vector<size_t> &shape) { | |||
| return device_shape; | |||
| } | |||
| std::vector<size_t> NcdhwDeviceShape(const std::vector<size_t> &shape) { | |||
| std::vector<size_t> NcdhwDeviceShape(const std::vector<size_t> &shape, const TypeId &type) { | |||
| if (shape.size() < kNdhwc) { | |||
| MS_LOG(EXCEPTION) << "Shape dims must be 5 when format is ndhwc."; | |||
| } | |||
| @@ -427,8 +432,9 @@ std::vector<size_t> PaddingShapeTo4d(const std::vector<size_t> &shape, const std | |||
| return shape_4d; | |||
| } | |||
| std::vector<size_t> TransShapeToDevice(const std::vector<size_t> &shape, const std::string &format) { | |||
| using DeviceShapeTransfer = std::function<std::vector<size_t>(const std::vector<size_t> &)>; | |||
| std::vector<size_t> TransShapeToDevice(const std::vector<size_t> &shape, const std::string &format, | |||
| const TypeId &type) { | |||
| using DeviceShapeTransfer = std::function<std::vector<size_t>(const std::vector<size_t> &, const TypeId &)>; | |||
| const std::map<std::string, DeviceShapeTransfer> device_shape_map{{kOpFormat_NCHW, NchwDeviceShape}, | |||
| {kOpFormat_NHWC, NhwcDeviceShape}, | |||
| {kOpFormat_HWCN, HwchDeviceShape}, | |||
| @@ -446,8 +452,9 @@ std::vector<size_t> TransShapeToDevice(const std::vector<size_t> &shape, const s | |||
| } | |||
| auto temp_shape = shape; | |||
| std::vector<size_t> device_shape; | |||
| auto kCube = CubeSizeByType(type); | |||
| if (format == kOpFormat_FRAC_NZ) { | |||
| if (shape.size() == 1 && (shape[0] == 1 || shape[0] % kCubeSize == 0)) { | |||
| if (shape.size() == 1 && (shape[0] == 1 || shape[0] % kCube == 0)) { | |||
| // For [1] and [1024] shape we can trait it as NZ shape | |||
| return shape; | |||
| } | |||
| @@ -456,12 +463,12 @@ std::vector<size_t> TransShapeToDevice(const std::vector<size_t> &shape, const s | |||
| } else { | |||
| (void)std::copy(shape.begin(), shape.end() - 2, std::back_inserter(device_shape)); | |||
| } | |||
| auto w1 = (shape[shape.size() - 1] - 1) / kCube + 1; | |||
| auto h1 = (shape[shape.size() - 2] - 1) / kCubeSize + 1; | |||
| auto w1 = (shape[shape.size() - 1] - 1) / kCubeSize + 1; | |||
| device_shape.push_back(w1); | |||
| device_shape.push_back(h1); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCubeSize); | |||
| device_shape.push_back(kCube); | |||
| return device_shape; | |||
| } else if (format == kOpFormat_FRACTAL_ZN_LSTM) { | |||
| const size_t c0 = 4; | |||
| @@ -483,7 +490,7 @@ std::vector<size_t> TransShapeToDevice(const std::vector<size_t> &shape, const s | |||
| if (iter == device_shape_map.end()) { | |||
| MS_LOG(EXCEPTION) << "Unexpected format[" << format << "]"; | |||
| } | |||
| return iter->second(temp_shape); | |||
| return iter->second(temp_shape, type); | |||
| } | |||
| bool CheckArgs(const FormatArgs &args, size_t *size, size_t *total_size) { | |||
| @@ -53,7 +53,7 @@ size_t CubeSizeByType(const TypeId data_type); | |||
| std::vector<size_t> PaddingShapeTo4d(const std::vector<size_t> &shape, const std::vector<Axis> &padding_axis = {}); | |||
| ShapeVector GetRuntimePaddingShape(const AnfNodePtr &node, size_t index); | |||
| bool IsNeedPadding(const std::string &format, const size_t shape_size); | |||
| std::vector<size_t> TransShapeToDevice(const std::vector<size_t> &shape, const std::string &format); | |||
| std::vector<size_t> TransShapeToDevice(const std::vector<size_t> &shape, const std::string &format, const TypeId &type); | |||
| bool TransDataType(const TypeIdArgs &args, void *result); | |||
| bool TransFormat(const FormatArgs &args, void *result); | |||
| bool TransFormatFromDeviceToHost(const FormatArgs &args, void *result); | |||
| @@ -455,7 +455,7 @@ std::vector<size_t> AscendDeviceAddress::GetWorkspaceSizeList(const nlohmann::js | |||
| std::vector<size_t> AscendDeviceAddress::GetDeviceShape(std::vector<size_t> *host_shape) const { | |||
| std::vector<size_t> device_shape; | |||
| if (format_ == kOpFormat_FRAC_NZ || format_ == kOpFormat_NCDHW) { | |||
| device_shape = trans::TransShapeToDevice(*host_shape, format_); | |||
| device_shape = trans::TransShapeToDevice(*host_shape, format_, type_id_); | |||
| } else { | |||
| if (host_shape_.empty()) { | |||
| *host_shape = trans::PaddingShapeTo4d(*host_shape); | |||
| @@ -463,7 +463,7 @@ std::vector<size_t> AscendDeviceAddress::GetDeviceShape(std::vector<size_t> *hos | |||
| host_shape->clear(); | |||
| (void)std::transform(host_shape_.begin(), host_shape_.end(), std::back_inserter(*host_shape), LongToSize); | |||
| } | |||
| device_shape = trans::TransShapeToDevice(*host_shape, format_); | |||
| device_shape = trans::TransShapeToDevice(*host_shape, format_, type_id_); | |||
| } | |||
| return device_shape; | |||
| } | |||
| @@ -577,10 +577,10 @@ bool AscendDeviceAddress::ConvertFormatAndSyncHostToDevice(const ShapeVector &sh | |||
| std::vector<size_t> device_shape; | |||
| if (format_ == kOpFormat_FRAC_NZ || format_ == kOpFormat_NCDHW || format_ == kOpFormat_NDC1HWC0 || | |||
| format_ == kOpFormat_FRACTAL_Z_3D) { | |||
| device_shape = trans::TransShapeToDevice(host_shape, format_); | |||
| device_shape = trans::TransShapeToDevice(host_shape, format_, type_id_); | |||
| } else { | |||
| host_shape = trans::PaddingShapeTo4d(host_shape); | |||
| device_shape = trans::TransShapeToDevice(host_shape, format_); | |||
| device_shape = trans::TransShapeToDevice(host_shape, format_, type_id_); | |||
| } | |||
| if (type_id_ != type) { | |||
| auto shape_size = abstract::ShapeSize(host_shape); | |||
| @@ -69,7 +69,8 @@ size_t KernelRuntime::CountNodeDeviceMemorySize(const mindspore::AnfNodePtr &nod | |||
| auto format = AnfAlgo::GetOutputFormat(node, output_index); | |||
| if (shape.empty() && format != kOpFormat_DEFAULT) { | |||
| shape = trans::PaddingShapeTo4d(shape, AnfAlgo::GetOutputReshapeType(node, output_index)); | |||
| shape = trans::TransShapeToDevice(shape, format); | |||
| auto dtype = AnfAlgo::GetOutputDeviceDataType(node, output_index); | |||
| shape = trans::TransShapeToDevice(shape, format, dtype); | |||
| } | |||
| // scalar's output shape is a empty vector | |||
| size_t tensor_size = std::accumulate(shape.begin(), shape.end(), type_size, std::multiplies<size_t>()); | |||
| @@ -378,6 +378,8 @@ TEST_F(AnfRuntimeAlgorithmTest, GetOutputDeviceShape) { | |||
| MS_EXCEPTION_IF_NULL(d_kernel_info); | |||
| KernelBuildInfoBuilder builder; | |||
| builder.SetOutputsFormat({kOpFormat_NCHW, kOpFormat_NCHW, kOpFormat_NHWC, kOpFormat_FRAC_NZ}); | |||
| builder.SetOutputsDeviceType({kFloat32->type_id(), kFloat32->type_id(), kFloat32->type_id(), | |||
| kFloat32->type_id()}); | |||
| d_kernel_info->set_select_kernel_build_info(builder.Build()); | |||
| EXPECT_EQ(AnfAlgo::GetOutputDeviceShape(add, 0)[2], 224); | |||
| EXPECT_EQ(AnfAlgo::GetOutputDeviceShape(add, 1)[0], 2); | |||
| @@ -409,6 +411,7 @@ TEST_F(AnfRuntimeAlgorithmTest, GetInputDeviceShape) { | |||
| MS_EXCEPTION_IF_NULL(d_kernel_info); | |||
| KernelBuildInfoBuilder builder; | |||
| builder.SetInputsFormat({kOpFormat_NCHW, kOpFormat_NCHW, kOpFormat_NHWC}); | |||
| builder.SetInputsDeviceType({kFloat32->type_id(), kFloat32->type_id(), kFloat32->type_id()}); | |||
| d_kernel_info->set_select_kernel_build_info(builder.Build()); | |||
| EXPECT_EQ(AnfAlgo::GetInputDeviceShape(add, 0)[2], 224); | |||
| EXPECT_EQ(AnfAlgo::GetInputDeviceShape(add, 1)[1], 32); | |||
| @@ -600,7 +603,7 @@ TEST_F(AnfRuntimeAlgorithmTest, SetOutputInferTypeAndShape) { | |||
| AnfAlgo::SetOutputInferTypeAndShape(single_types, single_shapes, add.get()); | |||
| EXPECT_EQ(AnfAlgo::GetOutputInferDataType(add, 0), kFloat32->type_id()); | |||
| EXPECT_EQ(AnfAlgo::GetOutputInferShape(add, 0).size(), 4); | |||
| // set mutiple input | |||
| // set multiple input | |||
| std::vector<TypeId> mutiple_types = {kFloat16->type_id(), kFloat32->type_id(), kFloat64->type_id()}; | |||
| std::vector<std::vector<size_t>> mutiple_shapes = {{2, 32, 224, 224}, {2, 32, 224, 224}, {2, 32, 224, 224}}; | |||
| AnfAlgo::SetOutputInferTypeAndShape(mutiple_types, mutiple_shapes, add.get()); | |||
| @@ -621,7 +624,7 @@ TEST_F(AnfRuntimeAlgorithmTest, CopyAbstract) { | |||
| std::vector<TypeId> single_types = {kFloat32->type_id()}; | |||
| std::vector<std::vector<size_t>> single_shapes = {{2, 32, 224, 224}}; | |||
| AnfAlgo::SetOutputInferTypeAndShape(single_types, single_shapes, first_add.get()); | |||
| // set mutiple input | |||
| // set multiple input | |||
| std::vector<AnfNodePtr> second_inputs; | |||
| second_inputs.push_back(NewValueNode(prim::kPrimTensorAdd)); | |||
| auto second_add = kernel_graph->NewCNode(second_inputs); | |||