| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -21,15 +21,21 @@ | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| TensorRow::TensorRow() noexcept : id_(kDefaultRowId), path_({}) {} | |||
| TensorRow::TensorRow() noexcept : id_(kDefaultRowId), path_({}), tensor_row_flag_(kFlagNone) {} | |||
| TensorRow::TensorRow(size_type n, TensorRow::value_type t) noexcept : id_(kDefaultRowId), path_({}), row_(n, t) {} | |||
| TensorRow::TensorRow(size_type n, TensorRow::value_type t) noexcept | |||
| : id_(kDefaultRowId), path_({}), row_(n, t), tensor_row_flag_(kFlagNone) {} | |||
| TensorRow::TensorRow(const TensorRow::vector_type &v) : id_(kDefaultRowId), path_({}), row_(v) {} | |||
| TensorRow::TensorRow(const TensorRow::vector_type &v) | |||
| : id_(kDefaultRowId), path_({}), row_(v), tensor_row_flag_(kFlagNone) {} | |||
| TensorRow::TensorRow(row_id_type id, const std::initializer_list<value_type> &lst) : id_(id), path_({}), row_(lst) {} | |||
| TensorRow::TensorRow(row_id_type id, const std::initializer_list<value_type> &lst) | |||
| : id_(id), path_({}), row_(lst), tensor_row_flag_(kFlagNone) {} | |||
| TensorRow::TensorRow(const TensorRow &tr) : id_(tr.id_), path_(tr.path_), row_(tr.row_) {} | |||
| TensorRow::TensorRow(const TensorRow &tr) | |||
| : id_(tr.id_), path_(tr.path_), row_(tr.row_), tensor_row_flag_(tr.tensor_row_flag_) {} | |||
| TensorRow::TensorRow(TensorRow::TensorRowFlags flag) : tensor_row_flag_(flag) {} | |||
| TensorRow &TensorRow::operator=(const TensorRow &tr) { | |||
| if (this == &tr) { | |||
| @@ -38,23 +44,27 @@ TensorRow &TensorRow::operator=(const TensorRow &tr) { | |||
| row_ = tr.row_; | |||
| id_ = tr.id_; | |||
| path_ = tr.path_; | |||
| tensor_row_flag_ = tr.tensor_row_flag_; | |||
| return *this; | |||
| } | |||
| TensorRow &TensorRow::operator=(const std::initializer_list<TensorRow::value_type> &lst) { | |||
| row_ = lst; | |||
| tensor_row_flag_ = kFlagNone; | |||
| return *this; | |||
| } | |||
| TensorRow::TensorRow(TensorRow::vector_type &&v) noexcept : id_(kDefaultRowId), path_({}), row_(std::move(v)) {} | |||
| TensorRow::TensorRow(TensorRow::vector_type &&v) noexcept | |||
| : id_(kDefaultRowId), path_({}), row_(std::move(v)), tensor_row_flag_(kFlagNone) {} | |||
| TensorRow::TensorRow(row_id_type id, std::initializer_list<value_type> &&lst) noexcept | |||
| : id_(id), path_({}), row_(std::move(lst)) {} | |||
| : id_(id), path_({}), row_(std::move(lst)), tensor_row_flag_(kFlagNone) {} | |||
| TensorRow::TensorRow(TensorRow &&tr) noexcept { | |||
| id_ = tr.id_; | |||
| path_ = std::move(tr.path_); | |||
| row_ = std::move(tr.row_); | |||
| tensor_row_flag_ = tr.tensor_row_flag_; | |||
| } | |||
| TensorRow &TensorRow::operator=(TensorRow &&tr) noexcept { | |||
| @@ -65,11 +75,13 @@ TensorRow &TensorRow::operator=(TensorRow &&tr) noexcept { | |||
| id_ = tr.id_; | |||
| tr.id_ = kDefaultRowId; | |||
| path_ = std::move(tr.path_); | |||
| tensor_row_flag_ = tr.tensor_row_flag_; | |||
| return *this; | |||
| } | |||
| TensorRow &TensorRow::operator=(std::initializer_list<TensorRow::value_type> &&lst) noexcept { | |||
| row_ = std::move(lst); | |||
| tensor_row_flag_ = kFlagNone; | |||
| return *this; | |||
| } | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -35,6 +35,14 @@ class TensorRow { | |||
| public: | |||
| static constexpr row_id_type kDefaultRowId = -1; // Default row id | |||
| enum TensorRowFlags : uint32_t { | |||
| kFlagNone = 0, | |||
| kFlagEOF = 1, // The buffer is an eof end-of-data msg | |||
| kFlagEOE = 1u << 1, // The buffer is an eoe end-of-epoch msg | |||
| kFlagWait = 1u << 2, // The buffer is an control signal for workers to suspend operations | |||
| kFlagQuit = 1u << 3 // The buffer is a control signal for workers to quit | |||
| }; | |||
| // Type definitions | |||
| using size_type = dsize_t; | |||
| using value_type = std::shared_ptr<Tensor>; | |||
| @@ -222,10 +230,25 @@ class TensorRow { | |||
| const_iterator end() const { return row_.end(); } | |||
| // Convenience getter functions for flag checking | |||
| bool eof() const { return (static_cast<uint32_t>(tensor_row_flag_) & static_cast<uint32_t>(kFlagEOF)); } | |||
| bool eoe() const { return (static_cast<uint32_t>(tensor_row_flag_) & static_cast<uint32_t>(kFlagEOE)); } | |||
| bool wait() const { return (static_cast<uint32_t>(tensor_row_flag_) & static_cast<uint32_t>(kFlagWait)); } | |||
| bool quit() const { return (static_cast<uint32_t>(tensor_row_flag_) & static_cast<uint32_t>(kFlagQuit)); } | |||
| TensorRowFlags Flags() { return tensor_row_flag_; } | |||
| explicit TensorRow(TensorRowFlags); | |||
| protected: | |||
| row_id_type id_; | |||
| std::vector<std::string> path_; | |||
| std::vector<std::shared_ptr<Tensor>> row_; | |||
| TensorRowFlags tensor_row_flag_; | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -114,27 +114,6 @@ Status CacheClient::WriteRow(const TensorRow &row, row_id_type *row_id_from_serv | |||
| return Status::OK(); | |||
| } | |||
| Status CacheClient::WriteBuffer(std::unique_ptr<DataBuffer> &&in) const { | |||
| std::unique_ptr<DataBuffer> db_ptr = std::move(in); | |||
| auto num_rows = db_ptr->NumRows(); | |||
| // We will send the requests async first on all rows and do a final wait. | |||
| if (num_rows > 0) { | |||
| auto arr = std::make_unique<std::shared_ptr<CacheRowRequest>[]>(num_rows); | |||
| for (auto i = 0; i < num_rows; ++i) { | |||
| TensorRow row; | |||
| RETURN_IF_NOT_OK(db_ptr->PopRow(&row)); | |||
| arr[i] = std::make_shared<CacheRowRequest>(this); | |||
| RETURN_IF_NOT_OK(arr[i]->SerializeCacheRowRequest(this, row)); | |||
| RETURN_IF_NOT_OK(PushRequest(arr[i])); | |||
| } | |||
| // Now we wait for them to come back | |||
| for (auto i = 0; i < num_rows; ++i) { | |||
| RETURN_IF_NOT_OK(arr[i]->Wait()); | |||
| } | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status CacheClient::AsyncWriteRow(const TensorRow &row) { | |||
| if (async_buffer_stream_ == nullptr) { | |||
| return Status(StatusCode::kMDNotImplementedYet); | |||
| @@ -143,34 +122,6 @@ Status CacheClient::AsyncWriteRow(const TensorRow &row) { | |||
| return Status::OK(); | |||
| } | |||
| Status CacheClient::AsyncWriteBuffer(std::unique_ptr<DataBuffer> &&in) { | |||
| if (async_buffer_stream_ == nullptr) { | |||
| return Status(StatusCode::kMDNotImplementedYet); | |||
| } else { | |||
| Status rc; | |||
| std::unique_ptr<TensorQTable> tensor_table = std::make_unique<TensorQTable>(); | |||
| auto num_rows = in->NumRows(); | |||
| if (num_rows > 0) { | |||
| for (auto i = 0; i < num_rows; ++i) { | |||
| TensorRow row; | |||
| RETURN_IF_NOT_OK(in->PopRow(&row)); | |||
| rc = AsyncWriteRow(row); | |||
| if (rc.StatusCode() == StatusCode::kMDNotImplementedYet) { | |||
| tensor_table->push_back(row); | |||
| } else if (rc.IsError()) { | |||
| return rc; | |||
| } | |||
| } | |||
| } | |||
| // If not all of them can be sent async, return what's left back to the caller. | |||
| if (!tensor_table->empty()) { | |||
| in->set_tensor_table(std::move(tensor_table)); | |||
| return Status(StatusCode::kMDNotImplementedYet); | |||
| } | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status CacheClient::GetRows(const std::vector<row_id_type> &row_id, TensorTable *out) const { | |||
| RETURN_UNEXPECTED_IF_NULL(out); | |||
| auto rq = std::make_shared<BatchFetchRequest>(this, row_id); | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -156,11 +156,6 @@ class CacheClient { | |||
| /// \return return code | |||
| Status WriteRow(const TensorRow &row, row_id_type *row_id_from_server = nullptr) const; | |||
| /// \brief Send a DataBuffer to the cache server | |||
| /// \param in Unique pointer of the DataBuffer to be cached | |||
| /// \return return code | |||
| Status WriteBuffer(std::unique_ptr<DataBuffer> &&in) const; | |||
| /// \brief Fetch a list of rows from the cache server. An empty TensorRow will be returned if there is | |||
| /// any cache miss | |||
| /// \param row_id A vector of row id's | |||
| @@ -257,6 +252,9 @@ class CacheClient { | |||
| return false; | |||
| } | |||
| /// \brief Serialize a Tensor into the async buffer. | |||
| Status AsyncWriteRow(const TensorRow &row); | |||
| // Default size of the async write buffer | |||
| constexpr static int64_t kAsyncBufferSize = 16 * 1048576L; // 16M | |||
| constexpr static int32_t kNumAsyncBuffer = 3; | |||
| @@ -269,8 +267,6 @@ class CacheClient { | |||
| return Status::OK(); | |||
| } | |||
| Status AsyncWriteBuffer(std::unique_ptr<DataBuffer> &&in); | |||
| private: | |||
| mutable RWLock mux_; | |||
| uint64_t cache_mem_sz_; | |||
| @@ -354,9 +350,6 @@ class CacheClient { | |||
| std::atomic<int64_t> next_addr_; | |||
| }; | |||
| std::shared_ptr<AsyncBufferStream> async_buffer_stream_; | |||
| /// \brief Serialize a Tensor into the async buffer. | |||
| Status AsyncWriteRow(const TensorRow &row); | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -272,7 +272,6 @@ Status CachePipelineRun::WriterWorkerEntry(int32_t worker_id) { | |||
| int64_t min_val = std::numeric_limits<int64_t>::max(); | |||
| int64_t max_val = 0; | |||
| int64_t total_val = 0; | |||
| int64_t cnt = 0; | |||
| std::vector<int64_t> duration; | |||
| duration.reserve(num_rows_ / num_pipelines_ / cfg_.num_parallel_workers()); | |||
| bool resource_err = false; | |||
| @@ -291,8 +290,6 @@ Status CachePipelineRun::WriterWorkerEntry(int32_t worker_id) { | |||
| } | |||
| // Once we hit resource error, we drain the io block. No point to send anything to the server. | |||
| if (!resource_err) { | |||
| auto buffer = std::make_unique<DataBuffer>(cnt++, DataBuffer::kDeBFlagNone); | |||
| auto tensor_table = std::make_unique<TensorQTable>(); | |||
| for (auto id : keys) { | |||
| TensorRow row; | |||
| std::shared_ptr<Tensor> element; | |||
| @@ -305,29 +302,27 @@ Status CachePipelineRun::WriterWorkerEntry(int32_t worker_id) { | |||
| *it = i; | |||
| } | |||
| row.push_back(std::move(element)); | |||
| tensor_table->push_back(std::move(row)); | |||
| } | |||
| buffer->set_tensor_table(std::move(tensor_table)); | |||
| // Measure the time to call WriteBuffer | |||
| auto start_tick = std::chrono::steady_clock::now(); | |||
| rc = cc_->AsyncWriteBuffer(std::move(buffer)); | |||
| auto end_tick = std::chrono::steady_clock::now(); | |||
| if (rc.IsError()) { | |||
| if (rc == StatusCode::kMDOutOfMemory || rc == StatusCode::kMDNoSpace) { | |||
| MS_LOG(WARNING) << "Pipeline number " << my_pipeline_ + 1 << " worker id " << worker_id << ": " | |||
| << rc.ToString(); | |||
| resource_err = true; | |||
| cc_->ServerRunningOutOfResources(); | |||
| continue; | |||
| // Measure the time to call WriteBuffer | |||
| auto start_tick = std::chrono::steady_clock::now(); | |||
| rc = cc_->AsyncWriteRow(std::move(row)); | |||
| auto end_tick = std::chrono::steady_clock::now(); | |||
| if (rc.IsError()) { | |||
| if (rc == StatusCode::kMDOutOfMemory || rc == StatusCode::kMDNoSpace) { | |||
| MS_LOG(WARNING) << "Pipeline number " << my_pipeline_ + 1 << " worker id " << worker_id << ": " | |||
| << rc.ToString(); | |||
| resource_err = true; | |||
| cc_->ServerRunningOutOfResources(); | |||
| continue; | |||
| } else { | |||
| return rc; | |||
| } | |||
| } else { | |||
| return rc; | |||
| int64_t ms = std::chrono::duration_cast<std::chrono::microseconds>(end_tick - start_tick).count(); | |||
| min_val = std::min(min_val, ms); | |||
| max_val = std::max(max_val, ms); | |||
| duration.push_back(ms); | |||
| total_val += ms; | |||
| } | |||
| } else { | |||
| int64_t ms = std::chrono::duration_cast<std::chrono::microseconds>(end_tick - start_tick).count(); | |||
| min_val = std::min(min_val, ms); | |||
| max_val = std::max(max_val, ms); | |||
| duration.push_back(ms); | |||
| total_val += ms; | |||
| } | |||
| } | |||
| } while (true); | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * Copyright 2019-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -27,13 +27,9 @@ | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| // Constructor of the IteratorBase | |||
| IteratorBase::IteratorBase() : curr_buffer_(nullptr), eof_handled_(false) {} | |||
| IteratorBase::~IteratorBase() = default; | |||
| // Fetches one row of data from the iterator as a column map. | |||
| Status IteratorBase::GetNextAsMap(TensorMap *out_map) { | |||
| Status DatasetIterator::GetNextAsMap(TensorMap *out_map) { | |||
| if (out_map == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Null output map in iterator!"); | |||
| } | |||
| @@ -67,63 +63,14 @@ Status IteratorBase::GetNextAsMap(TensorMap *out_map) { | |||
| return Status::OK(); | |||
| } | |||
| // Fetches one row of data from the iterator. | |||
| // The base class version simply performs error handling and returns empty row. Actual | |||
| // functionality exists in the derived versions of this function. | |||
| Status IteratorBase::FetchNextTensorRow(TensorRow *out_row) { | |||
| if (out_row == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Null output row in iterator!"); | |||
| } | |||
| // clear the old tensor row | |||
| out_row->clear(); | |||
| return Status::OK(); | |||
| } | |||
| Status IteratorBase::GetNextAsOrderedPair(std::vector<std::pair<std::string, std::shared_ptr<Tensor>>> *vec) { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(vec != nullptr && vec->empty(), "vec is null or non-empty."); | |||
| TensorRow curr_row; | |||
| RETURN_IF_NOT_OK(FetchNextTensorRow(&curr_row)); | |||
| RETURN_OK_IF_TRUE(curr_row.empty()); | |||
| size_t num_cols = curr_row.size(); // num_cols is non-empty. | |||
| if (col_name_id_map_.empty()) col_name_id_map_ = this->GetColumnNameMap(); | |||
| // order the column names according to their ids | |||
| if (column_order_.empty()) { | |||
| const int32_t invalid_col_id = -1; | |||
| column_order_.resize(num_cols, {std::string(), invalid_col_id}); | |||
| for (const auto &itr : col_name_id_map_) { | |||
| int32_t ind = itr.second; | |||
| CHECK_FAIL_RETURN_UNEXPECTED(ind < num_cols && ind >= 0, "column id out of bounds."); | |||
| column_order_[ind] = std::make_pair(itr.first, ind); | |||
| } | |||
| // error check, make sure the ids in col_name_id_map are continuous and starts from 0 | |||
| for (const auto &col : column_order_) { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(col.second != invalid_col_id, "column ids are not continuous."); | |||
| } | |||
| } | |||
| vec->reserve(num_cols); | |||
| for (const auto &col : column_order_) { | |||
| vec->emplace_back(std::make_pair(col.first, curr_row[col.second])); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| // Constructor of the DatasetIterator | |||
| DatasetIterator::DatasetIterator(std::shared_ptr<ExecutionTree> exe_tree) | |||
| : IteratorBase(), | |||
| root_(exe_tree->root()), | |||
| : root_(exe_tree->root()), | |||
| tracing_(nullptr), | |||
| cur_batch_num_(0), | |||
| cur_connector_size_(0), | |||
| cur_connector_capacity_(0) { | |||
| cur_connector_capacity_(0), | |||
| eof_handled_(false) { | |||
| std::shared_ptr<Tracing> node; | |||
| Status s = exe_tree->GetProfilingManager()->GetTracingNode(kDatasetIteratorTracingName, &node); | |||
| if (s.IsOk()) { | |||
| @@ -136,8 +83,11 @@ DatasetIterator::~DatasetIterator() = default; | |||
| // Fetches one row of data from the iterator. Overrides the base class. This one fetches | |||
| // from the tree root node directly. | |||
| Status DatasetIterator::FetchNextTensorRow(TensorRow *out_row) { | |||
| // Common code init and error checking in the base class. | |||
| RETURN_IF_NOT_OK(IteratorBase::FetchNextTensorRow(out_row)); | |||
| if (out_row == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Null output row in iterator!"); | |||
| } | |||
| // clear the old tensor row | |||
| out_row->clear(); | |||
| bool isProfilingEnable = root_->Tree()->GetProfilingManager()->IsProfilingEnable(); | |||
| @@ -149,41 +99,36 @@ Status DatasetIterator::FetchNextTensorRow(TensorRow *out_row) { | |||
| } | |||
| // Check if we need to get a new DataBuffer to iterate. | |||
| if (curr_buffer_ == nullptr || curr_buffer_->NumRows() == 0) { | |||
| if (tracing_ != nullptr) { | |||
| cur_connector_size_ = root_->ConnectorSize(); | |||
| cur_connector_capacity_ = root_->ConnectorCapacity(); | |||
| } | |||
| RETURN_IF_NOT_OK(root_->GetNextBuffer(&curr_buffer_)); | |||
| // Since GetNextBuffer was used rather than GetNextInput(), it means we need to manually | |||
| // handle eoe and eof messages here. | |||
| // | |||
| // An eoe buffer means we have iterated an epoch. | |||
| // The next buffer in the pipeline might be an EOF or a databuffer for next epoch | |||
| if (curr_buffer_->eoe()) { | |||
| MS_LOG(INFO) << "End of data iteration."; | |||
| curr_buffer_.reset(); // explicitly free the eoe buffer | |||
| if (isProfilingEnable) { | |||
| root_->Tree()->SetEpochEnd(); | |||
| } | |||
| return Status::OK(); | |||
| if (tracing_ != nullptr) { | |||
| cur_connector_size_ = root_->ConnectorSize(); | |||
| cur_connector_capacity_ = root_->ConnectorCapacity(); | |||
| } | |||
| RETURN_IF_NOT_OK(root_->GetNextRow(out_row)); | |||
| // Since GetNextBuffer was used rather than GetNextInput(), it means we need to manually | |||
| // handle eoe and eof messages here. | |||
| // | |||
| // An eoe buffer means we have iterated an epoch. | |||
| // The next buffer in the pipeline might be an EOF or a databuffer for next epoch | |||
| if (out_row->eoe()) { | |||
| MS_LOG(INFO) << "End of data iteration."; | |||
| if (isProfilingEnable) { | |||
| root_->Tree()->SetEpochEnd(); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| // An eof buffer means it is the end of execution and all operators are shutting down. | |||
| // Because there is no more data to return to the caller, this will change `eof_handled_` state and | |||
| // returns status unexpected error. | |||
| if (curr_buffer_->eof()) { | |||
| eof_handled_ = true; | |||
| curr_buffer_.reset(); // explicitly free the eof buffer | |||
| root_->Tree()->SetFinished(); | |||
| std::string err = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs."; | |||
| RETURN_STATUS_UNEXPECTED(err); | |||
| } | |||
| // An eof buffer means it is the end of execution and all operators are shutting down. | |||
| // Because there is no more data to return to the caller, this will change `eof_handled_` state and | |||
| // returns status unexpected error. | |||
| if (out_row->eof()) { | |||
| eof_handled_ = true; | |||
| root_->Tree()->SetFinished(); | |||
| std::string err = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs."; | |||
| RETURN_STATUS_UNEXPECTED(err); | |||
| } | |||
| // If we got this far, now it's time to pop that next row for return to caller | |||
| RETURN_IF_NOT_OK(curr_buffer_->PopRow(out_row)); | |||
| if (tracing_ != nullptr) { | |||
| cur_batch_num_++; | |||
| tracing_->Record(CONNECTOR_DEPTH, cur_connector_capacity_, cur_batch_num_, cur_connector_size_, | |||
| @@ -192,33 +137,6 @@ Status DatasetIterator::FetchNextTensorRow(TensorRow *out_row) { | |||
| return Status::OK(); | |||
| } | |||
| Status DatasetIterator::GetOutputShapes(std::vector<TensorShape> *out_shapes) { | |||
| if (out_shapes == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Null output shape argument"); | |||
| } | |||
| if (device_queue_row_.empty()) { | |||
| RETURN_IF_NOT_OK(FetchNextTensorRow(&device_queue_row_)); | |||
| } | |||
| for (const auto ts : device_queue_row_) { | |||
| out_shapes->push_back(ts->shape()); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status DatasetIterator::GetOutputTypes(std::vector<DataType> *out_types) { | |||
| if (out_types == nullptr) { | |||
| RETURN_STATUS_UNEXPECTED("Null output type argument"); | |||
| } | |||
| if (device_queue_row_.empty()) { | |||
| RETURN_IF_NOT_OK(FetchNextTensorRow(&device_queue_row_)); | |||
| } | |||
| for (const auto ts : device_queue_row_) { | |||
| out_types->push_back(ts->type()); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| // Getter | |||
| std::unordered_map<std::string, int32_t> DatasetIterator::GetColumnNameMap() const { | |||
| return root_->column_name_id_map(); | |||
| @@ -226,15 +144,16 @@ std::unordered_map<std::string, int32_t> DatasetIterator::GetColumnNameMap() con | |||
| // Constructor of the ChildIterator | |||
| ChildIterator::ChildIterator(DatasetOp *current_op, int32_t worker_id, int32_t child_idx) | |||
| : IteratorBase(), current_op_(current_op), child_idx_(child_idx), worker_id_(worker_id), end_epoch_(false) {} | |||
| : current_op_(current_op), child_idx_(child_idx), worker_id_(worker_id), end_epoch_(false), eof_handled_(false) {} | |||
| ChildIterator::~ChildIterator() { current_op_ = nullptr; } | |||
| // Fetches one row of data from the iterator. Overrides the base class. This one fetches | |||
| // only from the child/worker id as given from the constructor. | |||
| Status ChildIterator::FetchNextTensorRow(TensorRow *out_row) { | |||
| // Common code init and error checking in the base class. | |||
| RETURN_IF_NOT_OK(IteratorBase::FetchNextTensorRow(out_row)); | |||
| RETURN_UNEXPECTED_IF_NULL(out_row); | |||
| // clear the old tensor row | |||
| out_row->clear(); | |||
| // Once eof is handled, always return empty row. Class must be destroyed and recreated if you | |||
| // want to iterate again. | |||
| @@ -243,32 +162,24 @@ Status ChildIterator::FetchNextTensorRow(TensorRow *out_row) { | |||
| RETURN_STATUS_UNEXPECTED(err); | |||
| } | |||
| // Check if we need to get a new DataBuffer to iterate. | |||
| if (curr_buffer_ == nullptr || curr_buffer_->NumRows() == 0) { | |||
| // GetNextInput() depends on current_op's EoeReceived. So, EOE buffer might be already be handled and | |||
| // this child iterator might not see EOE buffer. | |||
| RETURN_IF_NOT_OK(current_op_->GetNextInput(&curr_buffer_, worker_id_, child_idx_)); | |||
| // If an eoe is picked up here, we simply return an empty vector and it's up to the | |||
| // caller to decide what it wants to do next. | |||
| if (curr_buffer_->eoe()) { | |||
| MS_LOG(DEBUG) << "Child iterator picked up EOE."; | |||
| end_epoch_ = true; | |||
| return Status::OK(); | |||
| } else { | |||
| end_epoch_ = false; | |||
| } | |||
| if (curr_buffer_->eof()) { | |||
| MS_LOG(DEBUG) << "Child iterator picked up EOF."; | |||
| eof_handled_ = true; | |||
| return Status::OK(); | |||
| } | |||
| RETURN_IF_NOT_OK(current_op_->child(child_idx_)->GetNextRow(out_row, worker_id_)); | |||
| // If an eoe is picked up here, we simply return an empty vector and it's up to the | |||
| // caller to decide what it wants to do next.TensorRow | |||
| if (out_row->eoe()) { | |||
| MS_LOG(DEBUG) << "(" << current_op_->NameWithID() << ", " << child_idx_ << ")" | |||
| << "Child iterator picked up EOE."; | |||
| end_epoch_ = true; | |||
| return Status::OK(); | |||
| } else { | |||
| end_epoch_ = false; | |||
| } | |||
| // If we got this far, now it's time to pop that next row for return to caller | |||
| RETURN_IF_NOT_OK(curr_buffer_->PopRow(out_row)); | |||
| if (out_row->eof()) { | |||
| MS_LOG(DEBUG) << "(" << current_op_->NameWithID() << ", " << child_idx_ << ")" | |||
| << "Child iterator picked up EOF."; | |||
| eof_handled_ = true; | |||
| *out_row = TensorRow(TensorRow::kFlagEOF); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| @@ -285,11 +196,12 @@ Status ChildIterator::Drain() { | |||
| return Status::OK(); | |||
| } | |||
| MS_LOG(DEBUG) << "Child draining buffers until eoe."; | |||
| TensorRow row; | |||
| // else we drain until eoe or eof, eof here is for sanity check | |||
| while (!curr_buffer_->eoe() && !curr_buffer_->eof()) { | |||
| RETURN_IF_NOT_OK(current_op_->GetNextInput(&curr_buffer_, worker_id_, child_idx_)); | |||
| while (!row.eoe() && !row.eof()) { | |||
| RETURN_IF_NOT_OK(current_op_->child(child_idx_)->GetNextRow(&row, worker_id_)); | |||
| } | |||
| if (curr_buffer_->eof()) { | |||
| if (row.eof()) { | |||
| return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, "Child iterator picked up EOF in drain."); | |||
| } | |||
| return Status::OK(); | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * Copyright 2019-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -35,18 +35,21 @@ using TensorMap = std::unordered_map<std::string, std::shared_ptr<Tensor>>; | |||
| // forward declare | |||
| class ExecutionTree; | |||
| class DataBuffer; | |||
| // IteratorBase class is used to iterate data from an executionTree one row at a time. | |||
| // The base class provides the general interface, whereas derived classes provide slightly | |||
| // different implementations. | |||
| class IteratorBase { | |||
| // The DatasetIterator derived class is for fetching rows off the end/root of the execution tree. | |||
| class DatasetIterator { | |||
| public: | |||
| // Constructor of IteratorBase | |||
| IteratorBase(); | |||
| // Constructor of the DatasetIterator | |||
| // @param exe_tree The execution tree we want to pull/iterate the data from using it's root node. | |||
| explicit DatasetIterator(std::shared_ptr<ExecutionTree> exe_tree); | |||
| // Destructor | |||
| virtual ~IteratorBase(); | |||
| ~DatasetIterator(); | |||
| // Getter | |||
| // @return The string to column id mapping. | |||
| std::unordered_map<std::string, int32_t> GetColumnNameMap() const; | |||
| bool eof_handled() const { return eof_handled_; } | |||
| // Fetches one row of data from the iterator. | |||
| // the base class version simply performs error handling and returns empty row. Actual | |||
| @@ -57,63 +60,12 @@ class IteratorBase { | |||
| // @note The position of a Tensor/column might be different from the initial column order | |||
| // in corresponding Dataset Op. User must be aware that MapOp, ZipOps, and others might change | |||
| // the column ordering. | |||
| virtual Status FetchNextTensorRow(TensorRow *out_row); | |||
| Status FetchNextTensorRow(TensorRow *out_row); | |||
| // Fetches one row of data from the iterator as a column map. | |||
| // @return A unordered map from column name to shared pointer to Tensor. | |||
| Status GetNextAsMap(TensorMap *out_map); | |||
| /// \brief return column_name, tensor pair in the order of its column id. | |||
| /// \param[out] vec | |||
| /// \return Error code | |||
| Status GetNextAsOrderedPair(std::vector<std::pair<std::string, std::shared_ptr<Tensor>>> *vec); | |||
| // Getter | |||
| // @return T/F if this iterator is completely done after getting an eof | |||
| bool eof_handled() const { return eof_handled_; } | |||
| // Getter | |||
| // @return The string to column id mapping. | |||
| virtual std::unordered_map<std::string, int32_t> GetColumnNameMap() const = 0; | |||
| protected: | |||
| std::unique_ptr<DataBuffer> curr_buffer_; // holds the current buffer | |||
| bool eof_handled_; // T/F if this op got an eof | |||
| std::unordered_map<std::string, int32_t> col_name_id_map_; | |||
| std::vector<std::pair<std::string, int32_t>> column_order_; // key: column name, val: column id | |||
| }; | |||
| // The DatasetIterator derived class is for fetching rows off the end/root of the execution tree. | |||
| class DatasetIterator : public IteratorBase { | |||
| public: | |||
| // Constructor of the DatasetIterator | |||
| // @param exe_tree The execution tree we want to pull/iterate the data from using it's root node. | |||
| explicit DatasetIterator(std::shared_ptr<ExecutionTree> exe_tree); | |||
| // Destructor | |||
| ~DatasetIterator(); | |||
| // Fetches one row of data from the iterator. Overrides the base class. This one fetches | |||
| // from the tree root node directly. | |||
| // @param out_row - A TensorRow (vector of shared pointers to Tensors). If any of the of data | |||
| // messages are encountered (such as eoe or eof), then an empty TensorRow is returned back. | |||
| // @return Status The status code returned | |||
| Status FetchNextTensorRow(TensorRow *out_row) override; | |||
| // Fetches the next tensor row into device row, and returns it's shape. | |||
| // @param out_shapes - A vector of tensor shapes (one shape per column) | |||
| // @return Status The status code returned | |||
| Status GetOutputShapes(std::vector<TensorShape> *out_shapes); | |||
| // Fetches the next tensor row into device row, and returns it's shape. | |||
| // @param outShapes - A vector of tensor shapes (one shape per column) | |||
| // @return Status The status code returned | |||
| Status GetOutputTypes(std::vector<DataType> *out_types); | |||
| // Getter | |||
| // @return The string to column id mapping. | |||
| std::unordered_map<std::string, int32_t> GetColumnNameMap() const override; | |||
| private: | |||
| std::shared_ptr<DatasetOp> root_; // saves the root of the executionTree | |||
| TensorRow device_queue_row_; | |||
| @@ -121,11 +73,14 @@ class DatasetIterator : public IteratorBase { | |||
| int32_t cur_batch_num_; // current batch number,used for profiling | |||
| int32_t cur_connector_size_; // current connector size of root op,used for profiling | |||
| int32_t cur_connector_capacity_; // current connector capacity of root op, used for profiling | |||
| bool eof_handled_; // T/F if this op got an eof | |||
| std::unordered_map<std::string, int32_t> col_name_id_map_; | |||
| std::vector<std::pair<std::string, int32_t>> column_order_; // key: column name, val: column id | |||
| }; | |||
| // The ChildIterator derived class is for fetching rows from intermediate nodes of execution tree. | |||
| // This one should only be used by internal Dataset operators, rather than an end-user. | |||
| class ChildIterator : public IteratorBase { | |||
| class ChildIterator { | |||
| public: | |||
| // Constructor of the DatasetIterator | |||
| // @param current_op - The parent op from which we'll fetch from it's children. | |||
| @@ -141,7 +96,7 @@ class ChildIterator : public IteratorBase { | |||
| // @param out_row - A TensorRow (vector of shared pointers to Tensors). If any of the of data | |||
| // messages are encountered (such as eoe or eof), then an empty TensorRow is returned back. | |||
| // @return Status The status code returned | |||
| Status FetchNextTensorRow(TensorRow *out_row) override; | |||
| Status FetchNextTensorRow(TensorRow *out_row); | |||
| // This function drains buffer until next eoe has been received. | |||
| // It will be a no-op if the previous row returned is empty. | |||
| @@ -150,16 +105,21 @@ class ChildIterator : public IteratorBase { | |||
| // Getter | |||
| // @return The string to column id mapping. | |||
| std::unordered_map<std::string, int32_t> GetColumnNameMap() const override; | |||
| std::unordered_map<std::string, int32_t> GetColumnNameMap() const; | |||
| // Return T/F if end of epoch | |||
| bool end_of_epoch() { return end_epoch_; } | |||
| // Getter | |||
| // @return T/F if this iterator is completely done after getting an eof | |||
| bool eof_handled() const { return eof_handled_; } | |||
| private: | |||
| DatasetOp *current_op_; // The parent operator. We consume from it's children. | |||
| int32_t child_idx_; // The specific child this iterator will fetch from. | |||
| int32_t worker_id_; // The worker id uses for fetching the child data. | |||
| bool end_epoch_; // the flag used when an empty row has been returned. | |||
| bool eof_handled_; // T/F if this op got an eof | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -71,9 +71,10 @@ Status BarrierOp::operator()() { | |||
| // Loop until eof is true | |||
| while (!eof_) { | |||
| // Create new table to put the new tensor rows | |||
| std::unique_ptr<TensorQTable> curr_table = std::make_unique<TensorQTable>(); | |||
| RETURN_IF_NOT_OK(prepare(curr_table.get())); | |||
| RETURN_IF_NOT_OK(prepare()); | |||
| // read the first row | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&new_row)); | |||
| // If an eof got picked up during the above prepare, then we're done | |||
| if (eof_) { | |||
| @@ -82,92 +83,36 @@ Status BarrierOp::operator()() { | |||
| // we have to output new buffer with possibly different buffer size, possibly one row | |||
| while (!clean_up_) { | |||
| // 1. If a previous loop iteration sent the current table out, then create a new one. | |||
| if (curr_table == nullptr) { | |||
| curr_table = std::make_unique<TensorQTable>(); | |||
| } | |||
| // 2 Block | |||
| RETURN_IF_NOT_OK(blockCond()); | |||
| // 2 fill the table. Note: clean_up mode might get turned on if epoch is finished | |||
| RETURN_IF_NOT_OK(fillBuffer(curr_table.get())); | |||
| // 3 create and update buffer and send it to the out connector | |||
| if (!curr_table->empty()) { | |||
| std::unique_ptr<DataBuffer> curr_buffer = std::make_unique<DataBuffer>(buffer_id_, DataBuffer::kDeBFlagNone); | |||
| curr_buffer->set_tensor_table(std::move(curr_table)); | |||
| MS_LOG(DEBUG) << "Barrier operator finished one buffer, pushing, rows " << curr_buffer->NumRows() << ", cols " | |||
| << curr_buffer->NumCols() << ", map " << column_name_id_map_.size() << "."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(curr_buffer))); | |||
| buffer_id_++; | |||
| } | |||
| MS_LOG(DEBUG) << "Barrier operator finished one row, pushing, cols " << new_row.size() << ", map " | |||
| << column_name_id_map_.size() << "."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row))); | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&new_row)); | |||
| } | |||
| // 4 handle drain state. | |||
| if (clean_up_) { | |||
| MS_LOG(DEBUG) << "Barrier operator sending epoch ending signal."; | |||
| // Send the eoe up. | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)))); | |||
| // 3 Send the eoe up. | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| } | |||
| } | |||
| // 5 handle eof | |||
| // 4 handle eof | |||
| // propagate eof here. | |||
| MS_LOG(INFO) << "Barrier operator got EOF, propagating."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| // Handles preprocessing of the main loop, used when starting new epoch | |||
| Status BarrierOp::prepare(TensorQTable *const table) { | |||
| Status BarrierOp::prepare() { | |||
| MS_LOG(DEBUG) << "Barrier operator prepares for new epoch."; | |||
| clean_up_ = false; | |||
| buffer_id_ = 0; | |||
| if (table == nullptr) { | |||
| return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, | |||
| "BarrierOp prepare phase requires a tensor table."); | |||
| } | |||
| // fill initial row | |||
| TensorRow new_row = {}; | |||
| // use iterator to get next row and invoke pyfunc wait | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&new_row)); | |||
| // If the first row fetching resulted in eof, then we are done. | |||
| if (eof_) { | |||
| return Status::OK(); | |||
| } | |||
| if (new_row.empty()) { | |||
| // This epoch is empty | |||
| return Status::OK(); | |||
| } | |||
| // Pack this first row into our tensor table | |||
| // first row we also have to check if we should block | |||
| RETURN_IF_NOT_OK(blockCond()); | |||
| table->push_back(std::move(new_row)); | |||
| // the update code below shouldn't do anything bad if the column name already exists. | |||
| return Status::OK(); | |||
| } | |||
| // fillBuffer always expects a new table to fill | |||
| Status BarrierOp::fillBuffer(TensorQTable *const table) { | |||
| if (table == nullptr) { | |||
| return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, "BarrierOp fillBuffer null table pointer."); | |||
| } | |||
| TensorRow new_row = {}; | |||
| while (table->size() < static_cast<size_t>(rows_per_buffer_)) { | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&new_row)); | |||
| // Early exit the loop if we got empty row from any of our child iterations | |||
| if (new_row.empty()) { | |||
| return Status::OK(); | |||
| } | |||
| // else we got a row so pack it into the tensor table. | |||
| RETURN_IF_NOT_OK(blockCond()); | |||
| table->push_back(std::move(new_row)); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| // function executes a py_func and blocks until condition becomes true. | |||
| Status BarrierOp::blockCond() { | |||
| { | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -139,7 +139,7 @@ class BarrierOp : public PipelineOp { | |||
| // Handles preprocessing of the main loop, used when starting new epoch | |||
| // @param table - a table of tensors to be moved into a buffer | |||
| Status prepare(TensorQTable *const table); | |||
| Status prepare(); | |||
| // This function calls takes a table repeatedly adds rows to it. | |||
| // @param table - a table of tensors to be moved into a buffer | |||
| @@ -152,7 +152,7 @@ class BarrierOp : public PipelineOp { | |||
| Status blockCond(); | |||
| private: | |||
| // clean up variable to return imcomplete buffer | |||
| // clean up variable to return incomplete buffer | |||
| bool clean_up_; | |||
| // end of file state, we stop reading data and shut down | |||
| bool eof_; | |||
| @@ -182,24 +182,21 @@ void BatchOp::Print(std::ostream &out, bool show_all) const { | |||
| } | |||
| } | |||
| Status BatchOp::BatchRows(const std::unique_ptr<TensorQTable> *src, const std::unique_ptr<TensorQTable> *dest, | |||
| dsize_t batch_size) { | |||
| Status BatchOp::BatchRows(const std::unique_ptr<TensorQTable> *src, TensorRow *dest, dsize_t batch_size) { | |||
| if ((*src)->size() != batch_size) { | |||
| RETURN_STATUS_UNEXPECTED("[Internal Batch ERROR] Source table size does not match the batch_size"); | |||
| } | |||
| if (batch_size == 1) { | |||
| TensorRow row = std::move((*src)->front()); | |||
| row.setPath({}); | |||
| *dest = std::move((*src)->front()); | |||
| (*src)->pop_front(); | |||
| (*dest)->push_back(row); | |||
| for (const auto &tensor : (*dest)->front()) { | |||
| for (const auto &tensor : (*dest)) { | |||
| RETURN_IF_NOT_OK(tensor->ExpandDim(0)); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| TensorRow batched_row; | |||
| auto num_columns = (*src)->front().size(); | |||
| for (size_t i = 0; i < num_columns; i++) { | |||
| std::shared_ptr<Tensor> first_tensor = (*src)->at(0).at(i); // first row, column i | |||
| @@ -234,11 +231,9 @@ Status BatchOp::BatchRows(const std::unique_ptr<TensorQTable> *src, const std::u | |||
| } | |||
| RETURN_IF_NOT_OK(Tensor::CreateFromVector(strings, new_shape, &new_tensor)); | |||
| } | |||
| batched_row.emplace_back(new_tensor); | |||
| dest->emplace_back(new_tensor); | |||
| } | |||
| (*dest)->emplace_back(batched_row); | |||
| return Status::OK(); | |||
| } | |||
| @@ -248,30 +243,26 @@ Status BatchOp::WorkerEntry(int32_t workerId) { | |||
| RETURN_IF_NOT_OK(worker_queues_[workerId]->PopFront(&table_pair)); | |||
| while (table_pair.second.ctrl_ != batchCtrl::kQuit) { | |||
| if (table_pair.second.ctrl_ == batchCtrl::kEOE) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(workerId, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE(workerId)); | |||
| } else if (table_pair.second.ctrl_ == batchCtrl::kEOF) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(workerId, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF(workerId)); | |||
| } else if (table_pair.second.ctrl_ == batchCtrl::kNoCtrl) { | |||
| std::unique_ptr<DataBuffer> db = nullptr; | |||
| RETURN_IF_NOT_OK(MakeBatchedBuffer(std::move(table_pair), &db)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(workerId, std::move(db))); | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(MakeBatchedBuffer(std::move(table_pair), &new_row)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row), workerId)); | |||
| } | |||
| RETURN_IF_NOT_OK(worker_queues_[workerId]->PopFront(&table_pair)); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status BatchOp::MakeBatchedBuffer(std::pair<std::unique_ptr<TensorQTable>, CBatchInfo> table_pair, | |||
| std::unique_ptr<DataBuffer> *db) { | |||
| Status BatchOp::MakeBatchedBuffer(std::pair<std::unique_ptr<TensorQTable>, CBatchInfo> table_pair, TensorRow *new_row) { | |||
| RETURN_UNEXPECTED_IF_NULL(table_pair.first); | |||
| #ifdef ENABLE_PYTHON | |||
| if (!in_col_names_.empty()) RETURN_IF_NOT_OK(MapColumns(&table_pair)); // pass it through pyfunc | |||
| #endif | |||
| if (pad_) RETURN_IF_NOT_OK(PadColumns(&table_pair.first, pad_info_, column_name_id_map_)); // do padding if needed | |||
| (*db) = std::make_unique<DataBuffer>(table_pair.second.batch_num_, DataBuffer::kDeBFlagNone); | |||
| std::unique_ptr<TensorQTable> dest_table = std::make_unique<TensorQTable>(); | |||
| RETURN_IF_NOT_OK(BatchRows(&table_pair.first, &dest_table, table_pair.first->size())); | |||
| (*db)->set_tensor_table(std::move(dest_table)); | |||
| RETURN_IF_NOT_OK(BatchRows(&table_pair.first, new_row, table_pair.first->size())); | |||
| return Status::OK(); | |||
| } | |||
| @@ -575,14 +566,14 @@ int64_t BatchOp::GetTreeBatchSize() { | |||
| return start_batch_size_; | |||
| } | |||
| Status BatchOp::GetNextRow(TensorRow *row) { | |||
| Status BatchOp::GetNextRowPullMode(TensorRow *row) { | |||
| std::unique_ptr<TensorQTable> table = std::make_unique<TensorQTable>(); | |||
| child_iterator_ = std::make_unique<ChildIterator>(this, 0, 0); | |||
| int32_t cur_batch_size = 0; | |||
| RETURN_IF_NOT_OK(GetBatchSize(&cur_batch_size, CBatchInfo(0, batch_num_, batch_cnt_))); | |||
| for (int i = 0; i < cur_batch_size; i++) { | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRow(&new_row)); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRowPullMode(&new_row)); | |||
| if (!new_row.empty()) { | |||
| table->emplace_back(new_row); | |||
| if (table->size() == static_cast<size_t>(cur_batch_size)) break; | |||
| @@ -592,13 +583,10 @@ Status BatchOp::GetNextRow(TensorRow *row) { | |||
| } | |||
| } | |||
| } | |||
| std::unique_ptr<TensorQTable> out = std::make_unique<TensorQTable>(); | |||
| RETURN_UNEXPECTED_IF_NULL(table); | |||
| if (pad_) RETURN_IF_NOT_OK(PadColumns(&table, pad_info_, column_name_id_map_)); // do padding if needed | |||
| if (!table->empty()) { | |||
| RETURN_IF_NOT_OK(BatchRows(&table, &out, table->size())); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(out->size() == 1, "Batch returned 2 rows while 1 row was expected."); | |||
| *row = out->back(); | |||
| RETURN_IF_NOT_OK(BatchRows(&table, row, table->size())); | |||
| batch_cnt_++; | |||
| batch_num_++; | |||
| } | |||
| @@ -203,8 +203,7 @@ class BatchOp : public ParallelOp { | |||
| // @param int32_t size - batch_size | |||
| // @param const std::unordered_map<std::string, int32_t>& column_name_id_map - column names to index mapping | |||
| // @return Status The status code returned | |||
| static Status BatchRows(const std::unique_ptr<TensorQTable> *src, const std::unique_ptr<TensorQTable> *dest, | |||
| dsize_t batch_size); | |||
| static Status BatchRows(const std::unique_ptr<TensorQTable> *src, TensorRow *dest, dsize_t batch_size); | |||
| // @param table | |||
| // @param const PadInfo &pad_info pad info | |||
| @@ -226,8 +225,7 @@ class BatchOp : public ParallelOp { | |||
| // Generate buffer with batched tensors | |||
| // @return Status The status code returned | |||
| Status MakeBatchedBuffer(std::pair<std::unique_ptr<TensorQTable>, CBatchInfo> table_pair, | |||
| std::unique_ptr<DataBuffer> *db); | |||
| Status MakeBatchedBuffer(std::pair<std::unique_ptr<TensorQTable>, CBatchInfo> table_pair, TensorRow *new_row); | |||
| #ifdef ENABLE_PYTHON | |||
| // Function that calls pyfunc to perform map on batch | |||
| @@ -259,7 +257,7 @@ class BatchOp : public ParallelOp { | |||
| // @return Status The status code returned | |||
| Status LaunchThreadsAndInitOp(); | |||
| Status GetNextRow(TensorRow *row) override; | |||
| Status GetNextRowPullMode(TensorRow *row) override; | |||
| #ifdef ENABLE_PYTHON | |||
| // Invoke batch size function with current BatchInfo to generate batch size. | |||
| @@ -136,11 +136,11 @@ Status BucketBatchByLengthOp::operator()() { | |||
| } | |||
| // need to send EOE manually since we set state to idle in EoeRecieved() | |||
| std::unique_ptr<DataBuffer> eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(¤t_row)); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| @@ -198,13 +198,11 @@ Status BucketBatchByLengthOp::PadAndBatchBucket(int32_t bucket_index, int32_t ba | |||
| // PadColumns will change the data in bucket | |||
| RETURN_IF_NOT_OK(BatchOp::PadColumns(bucket, pad_info_copy, column_name_id_map_)); | |||
| std::unique_ptr<TensorQTable> batched_bucket = std::make_unique<TensorQTable>(); | |||
| TensorRow batched_bucket; | |||
| RETURN_IF_NOT_OK(BatchOp::BatchRows(bucket, &batched_bucket, batch_size)); | |||
| (*bucket)->clear(); | |||
| std::unique_ptr<DataBuffer> batched_buffer = std::make_unique<DataBuffer>(batch_count_, DataBuffer::kDeBFlagNone); | |||
| batched_buffer->set_tensor_table(std::move(batched_bucket)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(batched_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(batched_bucket), 0)); | |||
| batch_count_++; | |||
| @@ -57,6 +57,7 @@ Status BuildSentencePieceVocabOp::operator()() { | |||
| RETURN_IF_NOT_OK(sentence_queue_->EmplaceBack(new_row)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(!eoe_warning, "no op should be after from_dataset (repeat detected)"); | |||
| eoe_warning = true; | |||
| } | |||
| @@ -91,8 +92,8 @@ Status BuildSentencePieceVocabOp::SentenceThread() { | |||
| } | |||
| vocab_->set_model_proto(model_proto); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE))); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| @@ -112,6 +112,7 @@ Status BuildVocabOp::operator()() { | |||
| RETURN_IF_NOT_OK(distributor_queue_->EmplaceBack(new_row)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(!eoe_warning, "no op should be after from_dataset (repeat detected)"); | |||
| eoe_warning = true; | |||
| } | |||
| @@ -184,8 +185,8 @@ Status BuildVocabOp::CollectorThread() { | |||
| for (const std::string &sp_tk : special_tokens_) vocab_->append_word(sp_tk); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE))); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| // then use std::nth_element to partial sort | |||
| return Status::OK(); | |||
| } | |||
| @@ -174,7 +174,6 @@ Status CacheBase::FetchSamplesToWorkers() { | |||
| } | |||
| Status CacheBase::FetchFromCache(int32_t worker_id) { | |||
| int64_t buffer_id = worker_id; | |||
| std::unique_ptr<IOBlock> blk; | |||
| do { | |||
| RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&blk)); | |||
| @@ -185,9 +184,9 @@ Status CacheBase::FetchFromCache(int32_t worker_id) { | |||
| wait_for_workers_post_.Set(); | |||
| } | |||
| } else if (blk->eof()) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF(worker_id)); | |||
| } else if (blk->eoe()) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE(worker_id)); | |||
| } else { | |||
| std::vector<int64_t> keys; | |||
| RETURN_IF_NOT_OK(blk->GetKeys(&keys)); | |||
| @@ -195,8 +194,6 @@ Status CacheBase::FetchFromCache(int32_t worker_id) { | |||
| // empty key is a quit signal for workers | |||
| break; | |||
| } | |||
| std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone); | |||
| std::unique_ptr<TensorQTable> que = std::make_unique<TensorQTable>(); | |||
| for (auto row_id : keys) { | |||
| TensorRow row; | |||
| // Block until the row shows up in the pool. | |||
| @@ -209,11 +206,8 @@ Status CacheBase::FetchFromCache(int32_t worker_id) { | |||
| RETURN_STATUS_UNEXPECTED(errMsg); | |||
| } | |||
| } | |||
| que->push_back(std::move(row)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(row), worker_id)); | |||
| } | |||
| db->set_tensor_table(std::move(que)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); | |||
| buffer_id += num_workers_; | |||
| } | |||
| } while (true); | |||
| return Status::OK(); | |||
| @@ -76,30 +76,21 @@ Status CacheMergeOp::operator()() { | |||
| // until it shows up in the pool. | |||
| Status CacheMergeOp::WorkerEntry(int32_t worker_id) { | |||
| TaskManager::FindMe()->Post(); | |||
| std::shared_ptr<DatasetOp> cache_hit_stream = child_[kCacheHitChildIdx]; | |||
| std::unique_ptr<DataBuffer> db_ptr; | |||
| RETURN_IF_NOT_OK(cache_hit_stream->GetNextBuffer(&db_ptr, worker_id)); | |||
| while (!db_ptr->eof()) { | |||
| if (db_ptr->eoe()) { | |||
| TensorRow new_row; | |||
| auto child_iterator = std::make_unique<ChildIterator>(this, worker_id, kCacheHitChildIdx); | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&new_row)); | |||
| while (!new_row.eof()) { | |||
| if (new_row.eoe()) { | |||
| RETURN_IF_NOT_OK(EoeReceived(worker_id)); | |||
| db_ptr.reset(); | |||
| RETURN_IF_NOT_OK(cache_hit_stream->GetNextBuffer(&db_ptr, worker_id)); | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&new_row)); | |||
| } else { | |||
| // See if there is any missing row | |||
| auto tbl = std::make_unique<TensorQTable>(); | |||
| while (db_ptr->NumRows() > 0) { | |||
| TensorRow row; | |||
| RETURN_IF_NOT_OK(db_ptr->PopRow(&row)); | |||
| if (row.empty()) { | |||
| auto row_id = row.getId(); | |||
| // Block until the row shows up in the pool. | |||
| RETURN_IF_NOT_OK(cache_miss_.PopFront(row_id, &row)); | |||
| } | |||
| tbl->push_back(std::move(row)); | |||
| if (new_row.empty()) { | |||
| auto row_id = new_row.getId(); | |||
| // Block until the row shows up in the pool. | |||
| RETURN_IF_NOT_OK(cache_miss_.PopFront(row_id, &new_row)); | |||
| } | |||
| db_ptr->set_tensor_table(std::move(tbl)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db_ptr))); | |||
| RETURN_IF_NOT_OK(cache_hit_stream->GetNextBuffer(&db_ptr, worker_id)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row), worker_id)); | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&new_row)); | |||
| } | |||
| } | |||
| RETURN_IF_NOT_OK(EofReceived(worker_id)); | |||
| @@ -111,16 +102,16 @@ Status CacheMergeOp::CacheMissWorkerEntry(int32_t workerId) { | |||
| // We will simply pop TensorRow from the stream and insert them into the pool and | |||
| // wake up any worker that is awaiting on the missing TensorRow. | |||
| // If we see an eoe, ignore it. For eof, we exit. | |||
| std::shared_ptr<DatasetOp> cache_missing_stream = child_[kCacheMissChildIdx]; | |||
| // Before we start, cache the schema at the server. Pick one of the workers | |||
| // do it. The schema should have been done at prepare time. | |||
| if (workerId == 0) { | |||
| RETURN_IF_NOT_OK(cache_client_->CacheSchema(column_name_id_map())); | |||
| } | |||
| std::unique_ptr<DataBuffer> db_ptr; | |||
| RETURN_IF_NOT_OK(cache_missing_stream->GetNextBuffer(&db_ptr, workerId)); | |||
| while (!db_ptr->eof()) { | |||
| if (db_ptr->eoe()) { | |||
| TensorRow new_row; | |||
| auto child_iterator = std::make_unique<ChildIterator>(this, workerId, kCacheMissChildIdx); | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&new_row)); | |||
| while (!new_row.eof()) { | |||
| if (new_row.eoe()) { | |||
| // Ignore it. | |||
| MS_LOG(DEBUG) << "Ignore eoe"; | |||
| // However we need to flush any left over from the async write buffer. But any error | |||
| @@ -135,36 +126,32 @@ Status CacheMergeOp::CacheMissWorkerEntry(int32_t workerId) { | |||
| } | |||
| } | |||
| } else { | |||
| while (db_ptr->NumRows() > 0) { | |||
| TensorRow row; | |||
| RETURN_IF_NOT_OK(db_ptr->PopRow(&row)); | |||
| row_id_type row_id = row.getId(); | |||
| if (row_id < 0) { | |||
| std::string errMsg = "Expect positive row id: " + std::to_string(row_id); | |||
| RETURN_STATUS_UNEXPECTED(errMsg); | |||
| } | |||
| if (cache_missing_rows_) { | |||
| // Technically number of this row shows up in the cache miss stream is equal to the number | |||
| // of P() call. However the cleaner wants it too. So we need an extra copy. | |||
| TensorRowCacheRequest *rq; | |||
| RETURN_IF_NOT_OK(GetRq(row_id, &rq)); | |||
| if (rq->GetState() == TensorRowCacheRequest::State::kEmpty) { | |||
| // We will send the request async. But any error we most | |||
| // likely ignore and continue. | |||
| Status rc; | |||
| rc = rq->AsyncSendCacheRequest(cache_client_, row); | |||
| if (rc.IsOk()) { | |||
| RETURN_IF_NOT_OK(io_que_->EmplaceBack(row_id)); | |||
| } else if (rc == StatusCode::kMDOutOfMemory || rc == kMDNoSpace) { | |||
| cache_missing_rows_ = false; | |||
| cache_client_->ServerRunningOutOfResources(); | |||
| } | |||
| row_id_type row_id = new_row.getId(); | |||
| if (row_id < 0) { | |||
| std::string errMsg = "Expect positive row id: " + std::to_string(row_id); | |||
| RETURN_STATUS_UNEXPECTED(errMsg); | |||
| } | |||
| if (cache_missing_rows_) { | |||
| // Technically number of this row shows up in the cache miss stream is equal to the number | |||
| // of P() call. However the cleaner wants it too. So we need an extra copy. | |||
| TensorRowCacheRequest *rq; | |||
| RETURN_IF_NOT_OK(GetRq(row_id, &rq)); | |||
| if (rq->GetState() == TensorRowCacheRequest::State::kEmpty) { | |||
| // We will send the request async. But any error we most | |||
| // likely ignore and continue. | |||
| Status rc; | |||
| rc = rq->AsyncSendCacheRequest(cache_client_, new_row); | |||
| if (rc.IsOk()) { | |||
| RETURN_IF_NOT_OK(io_que_->EmplaceBack(row_id)); | |||
| } else if (rc == StatusCode::kMDOutOfMemory || rc == kMDNoSpace) { | |||
| cache_missing_rows_ = false; | |||
| cache_client_->ServerRunningOutOfResources(); | |||
| } | |||
| } | |||
| RETURN_IF_NOT_OK(cache_miss_.Add(row_id, std::move(row))); | |||
| } | |||
| RETURN_IF_NOT_OK(cache_miss_.Add(row_id, std::move(new_row))); | |||
| } | |||
| RETURN_IF_NOT_OK(cache_missing_stream->GetNextBuffer(&db_ptr, workerId)); | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&new_row)); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| @@ -265,14 +252,14 @@ Status CacheMergeOp::Builder::Build(std::shared_ptr<CacheMergeOp> *ptr) { | |||
| Status CacheMergeOp::EoeReceived(int32_t worker_id) { | |||
| // Send the eoe up. | |||
| MS_LOG(DEBUG) << "Cache merge sending eoe"; | |||
| return DatasetOp::EoeReceived(worker_id); | |||
| return out_connector_->SendEOE(worker_id); | |||
| } | |||
| // Base-class override for handling cases when an eof is received. | |||
| Status CacheMergeOp::EofReceived(int32_t worker_id) { | |||
| // Send the eof up. | |||
| MS_LOG(DEBUG) << "Cache merge sending eof"; | |||
| return DatasetOp::EofReceived(worker_id); | |||
| return out_connector_->SendEOF(worker_id); | |||
| } | |||
| Status CacheMergeOp::GetRq(row_id_type row_id, CacheMergeOp::TensorRowCacheRequest **out) { | |||
| @@ -21,6 +21,7 @@ | |||
| #include "minddata/dataset/include/constants.h" | |||
| #include "minddata/dataset/core/global_context.h" | |||
| #include "minddata/dataset/engine/datasetops/repeat_op.h" | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/data_buffer.h" | |||
| #include "minddata/dataset/engine/execution_tree.h" | |||
| #include "minddata/dataset/util/log_adapter.h" | |||
| @@ -104,15 +105,16 @@ Status CacheOp::CacheAllRows(int32_t worker_id) { | |||
| } | |||
| MS_LOG(INFO) << "CacheOp first epoch SAVE mode started. Worker: " << worker_id; | |||
| // SAVE mode loop | |||
| std::unique_ptr<DataBuffer> db_ptr; | |||
| RETURN_IF_NOT_OK(this->GetNextInput(&db_ptr, worker_id, 0)); | |||
| while (!db_ptr->eof()) { | |||
| if (!db_ptr->eoe()) { | |||
| TensorRow row; | |||
| auto child_iterator = std::make_unique<ChildIterator>(this, worker_id, 0); | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&row)); | |||
| while (!row.eof()) { | |||
| if (!row.eoe()) { | |||
| Status rc; | |||
| // Do the Async write if we attach to the shared memory. | |||
| rc = cache_client_->AsyncWriteBuffer(std::move(db_ptr)); | |||
| rc = cache_client_->AsyncWriteRow(row); | |||
| if (rc.StatusCode() == StatusCode::kMDNotImplementedYet) { | |||
| RETURN_IF_NOT_OK(cache_client_->WriteBuffer(std::move(db_ptr))); | |||
| RETURN_IF_NOT_OK(cache_client_->WriteRow(row)); | |||
| } else if (rc.IsError()) { | |||
| return rc; | |||
| } | |||
| @@ -122,12 +124,13 @@ Status CacheOp::CacheAllRows(int32_t worker_id) { | |||
| // the eoe to indicate the end of the epoch, we should next expect to get the eof. | |||
| // Drain this eof so that we don't leave it sitting there on a connector that we'll never fetch | |||
| // from again. | |||
| RETURN_IF_NOT_OK(this->GetNextInput(&db_ptr, worker_id, 0)); | |||
| if (!db_ptr->eof()) { | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&row)); | |||
| if (!row.eof()) { | |||
| RETURN_STATUS_UNEXPECTED("Cache op expects to get an eof after eoe from child."); | |||
| } | |||
| break; | |||
| } | |||
| RETURN_IF_NOT_OK(this->GetNextInput(&db_ptr, worker_id, 0)); | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&row)); | |||
| } | |||
| } | |||
| // Let the main guy know we are done. | |||
| @@ -78,9 +78,12 @@ void ConcatOp::Print(std::ostream &out, bool show_all) const { | |||
| // Main entry point for Concat | |||
| Status ConcatOp::operator()() { | |||
| children_num_ = static_cast<int32_t>(child_.size()); | |||
| TaskManager::FindMe()->Post(); | |||
| std::unique_ptr<DataBuffer> buf; | |||
| children_num_ = static_cast<int32_t>(child_.size()); | |||
| for (int32_t i = 0; i < children_num_; i++) { | |||
| children_iterators_.push_back(std::make_unique<ChildIterator>(this, 0, i)); | |||
| } | |||
| TensorRow new_row; | |||
| int eof_count = 0; | |||
| int sample_number = 0; | |||
| bool is_not_mappable = true; | |||
| @@ -95,26 +98,26 @@ Status ConcatOp::operator()() { | |||
| while (eof_count == 0) { | |||
| for (int i = 0; i < children_num_; i++) { | |||
| // 1. Read the first buffer | |||
| RETURN_IF_NOT_OK(child_[i]->GetNextBuffer(&buf)); | |||
| if (buf->eof()) { | |||
| // 1. Read the first row | |||
| RETURN_IF_NOT_OK(children_iterators_[i]->FetchNextTensorRow(&new_row)); | |||
| if (new_row.eof()) { | |||
| eof_count++; | |||
| continue; | |||
| } | |||
| // 2. Do verification as for column name, column data type and rank of column data | |||
| if (!buf->eoe()) { | |||
| RETURN_IF_NOT_OK(Verify(i, buf)); | |||
| if (!new_row.eoe()) { | |||
| RETURN_IF_NOT_OK(Verify(i, new_row)); | |||
| } | |||
| // 3. Put the data into output_connector | |||
| if (!children_flag_and_nums_.empty()) { | |||
| is_not_mappable = children_flag_and_nums_[i].first; | |||
| is_not_mappable_or_second_ne_zero = is_not_mappable || (!children_flag_and_nums_[i].second); | |||
| } | |||
| while (!buf->eoe() && !buf->eof()) { | |||
| while (!new_row.eoe() && !new_row.eof()) { | |||
| // if dataset is not mappable or generator dataset which source is yield, cannot get the number of samples in | |||
| // python layer), we use filtering to get data | |||
| if (sample_number % num_shard == shard_index && is_not_mappable_or_second_ne_zero) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(buf))); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row))); | |||
| } else if (!is_not_mappable_or_second_ne_zero) { | |||
| // if dataset is mappable or generator dataset which source is not yield, | |||
| // get the start and end subscripts of valid values | |||
| @@ -122,7 +125,7 @@ Status ConcatOp::operator()() { | |||
| // determine whether the data allocated to the current shard id is false data | |||
| if (f(fv, sv, shard_index)) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(buf))); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row))); | |||
| } | |||
| } | |||
| @@ -131,7 +134,7 @@ Status ConcatOp::operator()() { | |||
| sample_number++; | |||
| } | |||
| RETURN_IF_NOT_OK(child_[i]->GetNextBuffer(&buf)); | |||
| RETURN_IF_NOT_OK(children_iterators_[i]->FetchNextTensorRow(&new_row)); | |||
| } | |||
| // if dataset is mappable,We don't use filtering to pick data. | |||
| @@ -143,8 +146,7 @@ Status ConcatOp::operator()() { | |||
| // 4. Add eoe buffer after get buffer from all child | |||
| if (eof_count == 0) { | |||
| auto eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| } | |||
| UpdateRepeatAndEpochCounter(); | |||
| } | |||
| @@ -152,15 +154,11 @@ Status ConcatOp::operator()() { | |||
| "Something went wrong, eof count does not match the number of children."); | |||
| // 5. Add eof buffer in the end manually | |||
| MS_LOG(DEBUG) << "Add the eof buffer manually in the end."; | |||
| auto eof_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eof_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| Status ConcatOp::Verify(int32_t id, const std::unique_ptr<DataBuffer> &buf) { | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(buf->GetRow(0, &new_row)); | |||
| Status ConcatOp::Verify(int32_t id, const TensorRow &new_row) { | |||
| if (id == 0) { | |||
| // Obtain the data type and data rank in child[0] | |||
| for (auto item : new_row) { | |||
| @@ -21,6 +21,7 @@ | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include <utility> | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/datasetops/pipeline_op.h" | |||
| #include "minddata/dataset/engine/datasetops/source/sampler/distributed_sampler.h" | |||
| @@ -111,7 +112,7 @@ class ConcatOp : public PipelineOp { | |||
| Status GetNumClasses(int64_t *num_classes) override; | |||
| private: | |||
| Status Verify(int32_t id, const std::unique_ptr<DataBuffer> &buf); | |||
| Status Verify(int32_t id, const TensorRow &tensor_row); | |||
| int32_t children_num_; // The num of child of parent node. | |||
| std::unordered_map<std::string, int32_t> column_name_id_; // Mapping between col index and col name | |||
| @@ -120,6 +121,8 @@ class ConcatOp : public PipelineOp { | |||
| std::shared_ptr<SamplerRT> sampler_; | |||
| std::vector<std::pair<int, int>> children_flag_and_nums_; | |||
| std::vector<std::pair<int, int>> children_start_end_index_; | |||
| std::vector<std::unique_ptr<ChildIterator>> children_iterators_; // Iterator for fetching. | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -252,45 +252,15 @@ void DatasetOp::Print(std::ostream &out, bool show_all) const { | |||
| } | |||
| } | |||
| Status DatasetOp::GetNextRow(TensorRow *row) { | |||
| Status DatasetOp::GetNextRowPullMode(TensorRow *row) { | |||
| RETURN_UNEXPECTED_IF_NULL(child_[0]); | |||
| return child_[0]->GetNextRow(row); | |||
| return child_[0]->GetNextRowPullMode(row); | |||
| } | |||
| // Gets the next buffer from the given child | |||
| Status DatasetOp::GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) { | |||
| Status DatasetOp::GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe) { | |||
| // pop is a blocked call and will throw an interruption if the whole group shuts down. | |||
| RETURN_IF_NOT_OK(out_connector_->PopWithRetry(static_cast<int>(worker_id), p_buffer, retry_if_eoe)); | |||
| return Status::OK(); | |||
| } | |||
| // Gets the next buffer from the given child . This function also has built-in eoe and eof | |||
| // message handling so that child classes don't have to manually code pass-through logic when | |||
| // those messages are received. | |||
| Status DatasetOp::GetNextInput(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, int32_t child_index) { | |||
| if (child_.size() == 0) { | |||
| return this->GetNextBuffer(p_buffer, worker_id); | |||
| } | |||
| CHECK_FAIL_RETURN_UNEXPECTED(child_index < child_.size(), | |||
| "Invalid data, child index too big : " + std::to_string(child_index)); | |||
| std::shared_ptr<DatasetOp> child = child_[child_index]; | |||
| std::unique_ptr<DataBuffer> buf; | |||
| RETURN_IF_NOT_OK(child->GetNextBuffer(&buf, worker_id)); | |||
| // Loop until non EOE is received | |||
| while (buf->eoe()) { | |||
| UpdateRepeatAndEpochCounter(); | |||
| RETURN_IF_NOT_OK(EoeReceived(worker_id)); | |||
| if (state_ == OpState::kDeOpIdle) { | |||
| *p_buffer = std::move(buf); | |||
| return Status::OK(); | |||
| } | |||
| RETURN_IF_NOT_OK(child->GetNextBuffer(&buf, worker_id)); | |||
| } | |||
| // Check if the last buf is next eof | |||
| if (buf->eof()) { | |||
| RETURN_IF_NOT_OK(EofReceived(worker_id)); | |||
| } | |||
| *p_buffer = std::move(buf); | |||
| RETURN_IF_NOT_OK(out_connector_->PopWithRetry(static_cast<int>(worker_id), row, retry_if_eoe)); | |||
| return Status::OK(); | |||
| } | |||
| @@ -328,18 +298,12 @@ Status DatasetOp::GetClassIndexing(std::vector<std::pair<std::string, std::vecto | |||
| // Performs handling for when an eoe message is received. | |||
| // The base class implementation simply flows the eoe message to output. Derived classes | |||
| // may override if they need to perform special eoe handling. | |||
| Status DatasetOp::EoeReceived(int32_t worker_id) { | |||
| std::unique_ptr<DataBuffer> eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE); | |||
| return (out_connector_->Add(static_cast<int>(worker_id), std::move(eoe_buffer))); | |||
| } | |||
| Status DatasetOp::EoeReceived(int32_t worker_id) { return out_connector_->SendEOE(worker_id); } | |||
| // Performs handling for when an eof message is received. | |||
| // The base class implementation simply flows the eof message to output. Derived classes | |||
| // may override if they need to perform special eof handling. | |||
| Status DatasetOp::EofReceived(int32_t worker_id) { | |||
| std::unique_ptr<DataBuffer> eof_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF); | |||
| return (out_connector_->Add(static_cast<int>(worker_id), std::move(eof_buffer))); | |||
| } | |||
| Status DatasetOp::EofReceived(int32_t worker_id) { return out_connector_->SendEOF(worker_id); } | |||
| // During tree prepare phase, operators may have specific post-operations to perform depending on their role. | |||
| Status DatasetOp::PrepareOperator() { | |||
| @@ -129,7 +129,7 @@ class DatasetOp : public std::enable_shared_from_this<DatasetOp> { | |||
| /// \param show_all - A bool to control if you want to show all info or just a summary | |||
| virtual void Print(std::ostream &out, bool show_all) const; | |||
| virtual Status GetNextRow(TensorRow *row); | |||
| virtual Status GetNextRowPullMode(TensorRow *row); | |||
| /// \brief << Stream output operator overload | |||
| /// \notes This allows you to write the debug print info using stream operators | |||
| @@ -149,35 +149,17 @@ class DatasetOp : public std::enable_shared_from_this<DatasetOp> { | |||
| virtual Status operator()() = 0; | |||
| /// \brief Gets the next buffer from the given child | |||
| /// \notes See GetNextInput for similar function that has built-in message handling | |||
| /// \param p_buffer - The shared pointer for the fetched buffer to return (by reference) | |||
| /// \param worker_id - The worker id | |||
| /// \return Status The status code returned | |||
| virtual Status GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id) { | |||
| return GetNextBuffer(p_buffer, worker_id, false); | |||
| } | |||
| /// \brief Gets the next buffer from the given child | |||
| /// \notes See GetNextInput for similar function that has built-in message handling | |||
| /// \param p_buffer - The shared pointer for the fetched buffer to return (by reference) | |||
| /// \param row[out] - Fetched TensorRow | |||
| /// \param worker_id[in] - The worker id, default to 0. | |||
| /// \return Status The status code returned | |||
| virtual Status GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer) { return GetNextBuffer(p_buffer, 0, false); } | |||
| virtual Status GetNextRow(TensorRow *row, int32_t worker_id = 0) { return GetNextRow(row, worker_id, false); } | |||
| /// \brief Gets the next buffer from the given child | |||
| /// \notes See GetNextInput for similar function that has built-in message handling | |||
| /// \param p_buffer - The shared pointer for the fetched buffer to return (by reference) | |||
| /// \param worker_id - The worker id | |||
| /// \param row[out] - Fetched TensorRow | |||
| /// \param worker_id[in] - The worker id, default to 0. | |||
| /// \param retry_if_eoe Set this flag to true to allow calling pop() again after the first pop() returns EOE. | |||
| /// \return Status The status code returned | |||
| virtual Status GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe); | |||
| /// \brief Gets the next buffer from the given child . This function also has built-in eoe and eof | |||
| /// message handling so that child classes don't have to manually code pass-through logic when | |||
| /// those messages are received. | |||
| /// \param p_buffer - The shared pointer for the fetched buffer to return (by reference) | |||
| /// \param worker_id - The worker id | |||
| /// \return Status The status code returned | |||
| Status GetNextInput(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id = 0, int32_t child_index = 0); | |||
| virtual Status GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe); | |||
| /// \brief Gets the batch size | |||
| /// \return Status - The status code return | |||
| @@ -93,21 +93,18 @@ Status DeviceQueueOp::EoeReceived(int32_t worker_id) { | |||
| return Status::OK(); | |||
| } | |||
| Status DeviceQueueOp::CheckExceptions(const std::unique_ptr<DataBuffer> &buffer) const { | |||
| // this method checks if the buffer meets the conditions to be sent to TDT | |||
| if (buffer->NumRows() != 0) { | |||
| TensorRow row; | |||
| buffer->GetRow(0, &row); | |||
| for (const auto &item : row) { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(item->type().IsNumeric(), "Invalid data, cannot send string tensor to device."); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(item->HasData(), "Invalid data, cannot send tensor with no data to device."); | |||
| } | |||
| Status DeviceQueueOp::CheckExceptions(const TensorRow &row) const { | |||
| // this method checks if the row meets the conditions to be sent to TDT | |||
| for (const auto &item : row) { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(item->type().IsNumeric(), "Invalid data, cannot send string tensor to device."); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(item->HasData(), "Invalid data, cannot send tensor with no data to device."); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status DeviceQueueOp::operator()() { | |||
| TaskManager::FindMe()->Post(); | |||
| child_iterator_ = std::make_unique<ChildIterator>(this, 0, 0); | |||
| #ifdef ENABLE_DUMP_IR | |||
| if (md_channel_info_ == nullptr) { | |||
| @@ -163,43 +160,39 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| md_channel_info_->RecordBatchQueue(ChildOpConnectorSize()); | |||
| md_channel_info_->RecordPreprocessBatch(0); | |||
| #endif | |||
| std::unique_ptr<DataBuffer> current_buffer; | |||
| RETURN_IF_NOT_OK(GetNextInput(¤t_buffer)); | |||
| while (!current_buffer->eof() && !is_break_loop) { | |||
| while (!current_buffer->eoe() && !is_break_loop) { | |||
| RETURN_IF_NOT_OK(CheckExceptions(current_buffer)); | |||
| TensorRow currRow; | |||
| for (int row_id = 0; row_id < current_buffer->NumRows(); row_id++) { | |||
| RETURN_IF_NOT_OK(current_buffer->GetRow(row_id, &currRow)); | |||
| WaitContinueSignal(); | |||
| TensorRow curr_row; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&curr_row)); | |||
| while (!curr_row.eof() && !is_break_loop) { | |||
| while (!curr_row.eoe() && !is_break_loop) { | |||
| RETURN_IF_NOT_OK(CheckExceptions(curr_row)); | |||
| WaitContinueSignal(); | |||
| #ifdef ENABLE_DUMP_IR | |||
| md_channel_info_->RecordBatchQueue(ChildOpConnectorSize()); | |||
| md_channel_info_->RecordPreprocessBatch(send_batch); | |||
| md_channel_info_->RecordPushStartTime(); | |||
| md_channel_info_->RecordBatchQueue(ChildOpConnectorSize()); | |||
| md_channel_info_->RecordPreprocessBatch(send_batch); | |||
| md_channel_info_->RecordPushStartTime(); | |||
| #endif | |||
| RETURN_IF_NOT_OK(SendRowToTdt(currRow, isProfilingEnable, &tdt_cost)); | |||
| ProfilingRecorder(isProfilingEnable, profiling_node, send_batch, tdt_cost, &batch_start_time, &end_time, | |||
| connector_capacity, connector_size); | |||
| send_batch++; | |||
| RETURN_IF_NOT_OK(SendRowToTdt(curr_row, isProfilingEnable, &tdt_cost)); | |||
| ProfilingRecorder(isProfilingEnable, profiling_node, send_batch, tdt_cost, &batch_start_time, &end_time, | |||
| connector_capacity, connector_size); | |||
| send_batch++; | |||
| #ifdef ENABLE_DUMP_IR | |||
| md_channel_info_->RecordBatchQueue(ChildOpConnectorSize()); | |||
| md_channel_info_->RecordPreprocessBatch(send_batch); | |||
| md_channel_info_->RecordPushEndTime(); | |||
| md_channel_info_->RecordBatchQueue(ChildOpConnectorSize()); | |||
| md_channel_info_->RecordPreprocessBatch(send_batch); | |||
| md_channel_info_->RecordPushEndTime(); | |||
| #endif | |||
| if (total_batch_ > 0 && send_batch >= total_batch_) { | |||
| is_break_loop = true; | |||
| break; | |||
| } | |||
| if (total_batch_ > 0 && send_batch >= total_batch_) { | |||
| is_break_loop = true; | |||
| break; | |||
| } | |||
| if (isProfilingEnable) { | |||
| connector_size = ChildOpConnectorSize(); | |||
| connector_capacity = ChildOpConnectorCapacity(); | |||
| } | |||
| RETURN_IF_NOT_OK(GetNextInput(¤t_buffer)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&curr_row)); | |||
| } | |||
| if (current_buffer->eoe() && send_epoch_end_) { | |||
| if (curr_row.eoe() && send_epoch_end_) { | |||
| TensorRow currRow; | |||
| auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost, | |||
| ACL_TENSOR_DATA_END_OF_SEQUENCE); | |||
| @@ -219,7 +212,7 @@ Status DeviceQueueOp::SendDataToAscend() { | |||
| connector_capacity = ChildOpConnectorCapacity(); | |||
| tree_->SetEpochEnd(); | |||
| } | |||
| RETURN_IF_NOT_OK(GetNextInput(¤t_buffer)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&curr_row)); | |||
| } | |||
| // now we use this flag to judge whether exception raised. | |||
| @@ -444,27 +437,23 @@ Status DeviceQueueOp::WorkerEntry(int32_t worker_id) { | |||
| // Every thread use cuda api should SetThreadDevice | |||
| RETURN_IF_NOT_OK(SetThreadDevice()); | |||
| TaskManager::FindMe()->Post(); | |||
| std::unique_ptr<DataBuffer> current_buffer; | |||
| TensorRow current_row; | |||
| uint32_t batch_num = 0; | |||
| RETURN_IF_NOT_OK(receive_queues_[worker_id]->PopFront(¤t_buffer)); | |||
| while (!current_buffer->quit() && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| TensorRow curr_row; | |||
| for (int row_id = 0; row_id < current_buffer->NumRows() && !GpuBufferMgr::GetInstance().IsClosed(); row_id++) { | |||
| RETURN_IF_NOT_OK(current_buffer->GetRow(row_id, &curr_row)); | |||
| std::vector<device::DataItemGpu> items; | |||
| for (int i = 0; i < curr_row.size(); i++) { | |||
| device::DataItemGpu data_item; | |||
| data_item.data_len_ = static_cast<size_t>(curr_row[i]->SizeInBytes()); | |||
| data_item.data_ptr_ = nullptr; | |||
| data_item.worker_id_ = worker_id; | |||
| items.push_back(data_item); | |||
| } | |||
| RETURN_IF_NOT_OK(MallocForGPUData(&items, curr_row, worker_id)); | |||
| RETURN_IF_NOT_OK(gpu_item_connector_->Add(worker_id, std::move(items))); | |||
| batch_num++; | |||
| RETURN_IF_NOT_OK(receive_queues_[worker_id]->PopFront(¤t_row)); | |||
| while (!current_row.quit() && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| std::vector<device::DataItemGpu> items; | |||
| for (int i = 0; i < current_row.size(); i++) { | |||
| device::DataItemGpu data_item; | |||
| data_item.data_len_ = static_cast<size_t>(current_row[i]->SizeInBytes()); | |||
| data_item.data_ptr_ = nullptr; | |||
| data_item.worker_id_ = worker_id; | |||
| items.push_back(data_item); | |||
| } | |||
| RETURN_IF_NOT_OK(MallocForGPUData(&items, current_row, worker_id)); | |||
| RETURN_IF_NOT_OK(gpu_item_connector_->Add(worker_id, std::move(items))); | |||
| batch_num++; | |||
| RETURN_IF_NOT_OK(receive_queues_[worker_id]->PopFront(¤t_buffer)); | |||
| RETURN_IF_NOT_OK(receive_queues_[worker_id]->PopFront(¤t_row)); | |||
| } | |||
| MS_LOG(INFO) << "Device queue worker id " << worker_id << "proc " << batch_num << "batch."; | |||
| @@ -477,31 +466,31 @@ Status DeviceQueueOp::WorkerEntry(int32_t worker_id) { | |||
| Status DeviceQueueOp::SendDataToGPU() { | |||
| RETURN_IF_NOT_OK(LaunchParallelCopyThread()); | |||
| MS_LOG(INFO) << "Device queue, sending data to GPU."; | |||
| std::unique_ptr<DataBuffer> current_buffer; | |||
| RETURN_IF_NOT_OK(GetNextInput(¤t_buffer)); | |||
| TensorRow current_row; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(¤t_row)); | |||
| int64_t num_buf = 0; | |||
| bool is_break_loop = false; | |||
| while (!current_buffer->eof() && !is_break_loop && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| while (!current_buffer->eoe() && !is_break_loop && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| RETURN_IF_NOT_OK(CheckExceptions(current_buffer)); | |||
| RETURN_IF_NOT_OK(receive_queues_[num_buf++ % num_workers_]->Add(std::move(current_buffer))); | |||
| while (!current_row.eof() && !is_break_loop && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| while (!current_row.eoe() && !is_break_loop && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| RETURN_IF_NOT_OK(CheckExceptions(current_row)); | |||
| RETURN_IF_NOT_OK(receive_queues_[num_buf++ % num_workers_]->Add(std::move(current_row))); | |||
| if (!TaskManager::FindMe()->Interrupted() && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| RETURN_IF_NOT_OK(GetNextInput(¤t_buffer)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(¤t_row)); | |||
| } else { | |||
| is_break_loop = true; | |||
| } | |||
| } | |||
| if (!TaskManager::FindMe()->Interrupted() && !GpuBufferMgr::GetInstance().IsClosed()) { | |||
| RETURN_IF_NOT_OK(GetNextInput(¤t_buffer)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(¤t_row)); | |||
| } else { | |||
| is_break_loop = true; | |||
| } | |||
| } | |||
| for (uint32_t index = 0; index < num_workers_; index++) { | |||
| auto quit = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagQuit); | |||
| RETURN_IF_NOT_OK(receive_queues_[num_buf++ % num_workers_]->Add(std::move(quit))); | |||
| TensorRow quit_flag(TensorRow::kFlagQuit); | |||
| RETURN_IF_NOT_OK(receive_queues_[num_buf++ % num_workers_]->Add(std::move(quit_flag))); | |||
| } | |||
| MS_LOG(INFO) << "Device queue receive " << num_buf - num_workers_ << " batch."; | |||
| @@ -537,10 +526,9 @@ Status DeviceQueueOp::SendDataToCPU() { | |||
| MS_LOG(INFO) << "Device queue, sending data to CPU."; | |||
| int64_t total_batch = 0; | |||
| std::unique_ptr<ChildIterator> child_iterator = std::make_unique<ChildIterator>(this, 0, 0); | |||
| while (!(child_iterator->eof_handled())) { | |||
| while (!(child_iterator_->eof_handled())) { | |||
| TensorRow curr_row; | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&curr_row)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&curr_row)); | |||
| if (!curr_row.empty()) { | |||
| for (auto &tensor : curr_row) { | |||
| @@ -23,6 +23,8 @@ | |||
| #include "minddata/dataset/engine/datasetops/pipeline_op.h" | |||
| #include "minddata/dataset/engine/datasetops/repeat_op.h" | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/perf/device_queue_tracing.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| #ifdef ENABLE_DUMP_IR | |||
| @@ -182,9 +184,9 @@ class DeviceQueueOp : public PipelineOp { | |||
| std::string Name() const override { return kDeviceQueueOp; } | |||
| private: | |||
| // Name: checkExceptions(DataBuffer); | |||
| // Description: Check whether the dataBuffer meets the condition for performing DeviceQueueOp | |||
| Status CheckExceptions(const std::unique_ptr<DataBuffer> &buffer) const; | |||
| // Name: checkExceptions(TensorRow); | |||
| // Description: Check whether the TensorRow meets the condition for performing DeviceQueueOp | |||
| Status CheckExceptions(const TensorRow &row) const; | |||
| private: | |||
| #ifdef ENABLE_TDTQUE | |||
| @@ -204,7 +206,7 @@ class DeviceQueueOp : public PipelineOp { | |||
| Status WorkerEntry(int32_t worker_id); | |||
| Status SetThreadDevice(); | |||
| QueueList<std::unique_ptr<DataBuffer>> receive_queues_; | |||
| QueueList<TensorRow> receive_queues_; | |||
| std::vector<std::shared_ptr<MemoryPool>> pool_; | |||
| std::unique_ptr<GpuItemConnector> gpu_item_connector_; | |||
| uint32_t num_workers_; | |||
| @@ -216,6 +218,8 @@ class DeviceQueueOp : public PipelineOp { | |||
| #endif | |||
| Status SendDataToCPU(); | |||
| std::unique_ptr<ChildIterator> child_iterator_; | |||
| std::string channel_name_; | |||
| DeviceType device_type_; | |||
| const int32_t device_id_; | |||
| @@ -61,24 +61,21 @@ void EpochCtrlOp::Print(std::ostream &out, bool show_all) const { | |||
| } | |||
| } | |||
| Status EpochCtrlOp::GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) { | |||
| Status EpochCtrlOp::GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe) { | |||
| if (child_.empty()) { | |||
| RETURN_STATUS_UNEXPECTED("EpochCtrlOp can't be the leaf node."); | |||
| } | |||
| std::unique_ptr<DataBuffer> buf; | |||
| // `retry_if_eoe` is false because EpochCtrlOp does not eat EOE. | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf, worker_id, false)); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRow(row, worker_id, false)); | |||
| // Only intercept EOE for EoeReceived processing, after that the EOE is forwarded to next op. | |||
| // Other databuffers containing data or EOF will simply be forwarded. | |||
| // EOF can simply be forwarded because this op does not spawn any thread, thus does not require clean up. | |||
| if (buf->eoe()) { | |||
| if (row->eoe()) { | |||
| RETURN_IF_NOT_OK(EoeReceived(worker_id)); | |||
| } | |||
| *p_buffer = std::move(buf); | |||
| return Status::OK(); | |||
| } | |||
| @@ -59,7 +59,7 @@ class EpochCtrlOp : public RepeatOp { | |||
| // Since EpochCtrlOp is derived from RepeatOp which is an inlined op, getting a buffer from us | |||
| // will simply bounce you to get a buffer from our child. | |||
| // Epoch Control Op does not eat the EOE, it will pass the EOE to the next op. | |||
| Status GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) override; | |||
| Status GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe) override; | |||
| // Base-class override for handling cases when an eoe is received. | |||
| // @param worker_id - The worker id | |||
| @@ -23,7 +23,6 @@ | |||
| #include "minddata/dataset/core/global_context.h" | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/engine/data_buffer.h" | |||
| #include "minddata/dataset/engine/execution_tree.h" | |||
| #include "minddata/dataset/kernels/tensor_op.h" | |||
| #include "minddata/dataset/util/log_adapter.h" | |||
| #include "minddata/dataset/util/task_manager.h" | |||
| @@ -80,8 +79,8 @@ Status FilterOp::EofReceived(int32_t) { return Status::OK(); } | |||
| Status FilterOp::EoeReceived(int32_t) { return Status::OK(); } | |||
| // Validating if each of the input_columns exists in the DataBuffer. | |||
| Status FilterOp::ValidateInColumns(const std::vector<std::string> *input_columns) { | |||
| for (const auto &inCol : *input_columns) { | |||
| Status FilterOp::ValidateInColumns(const std::vector<std::string> &input_columns) { | |||
| for (const auto &inCol : input_columns) { | |||
| bool found = column_name_id_map_.find(inCol) != column_name_id_map_.end() ? true : false; | |||
| if (!found) { | |||
| std::string err_msg = "Invalid parameter, column name: " + inCol + " does not exist in the dataset columns."; | |||
| @@ -111,68 +110,51 @@ void FilterOp::Print(std::ostream &out, bool show_all) const { | |||
| } | |||
| Status FilterOp::WorkerEntry(int32_t worker_id) { | |||
| std::unique_ptr<ChildIterator> child_iterator = std::make_unique<ChildIterator>(this, worker_id, 0); | |||
| // Handshake with TaskManager that thread creation is successful. | |||
| TaskManager::FindMe()->Post(); | |||
| std::unique_ptr<DataBuffer> in_buffer; | |||
| bool worker_stop = false; | |||
| while (worker_stop == false) { | |||
| // Getting a databuffer to work on. | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&in_buffer, worker_id)); | |||
| if (in_buffer->eoe()) { | |||
| filter_queues_[worker_id]->EmplaceBack(std::make_pair(std::move(in_buffer), filterCtrl::kFilterEoe)); | |||
| // Getting a TensorRow to work on. | |||
| TensorRow in_row; | |||
| RETURN_IF_NOT_OK(child_iterator->FetchNextTensorRow(&in_row)); | |||
| if (in_row.eoe()) { | |||
| RETURN_IF_NOT_OK(filter_queues_[worker_id]->EmplaceBack(std::make_pair(in_row, filterCtrl::kFilterEoe))); | |||
| continue; | |||
| } else if (in_buffer->eof()) { | |||
| filter_queues_[worker_id]->EmplaceBack(std::make_pair(std::move(in_buffer), filterCtrl::kFilterEof)); | |||
| } else if (in_row.eof()) { | |||
| RETURN_IF_NOT_OK(filter_queues_[worker_id]->EmplaceBack(std::make_pair(in_row, filterCtrl::kFilterEof))); | |||
| worker_stop = true; | |||
| continue; | |||
| } | |||
| RETURN_IF_NOT_OK(CheckColumns(in_buffer.get(), &in_columns_)); | |||
| RETURN_IF_NOT_OK(ValidateInColumns(in_columns_)); | |||
| // if the databuffer was all filtered, it is marked as kFilterEmpty. | |||
| // if the databuffer was partially filtered, it is marked as kFilterPartial. | |||
| // if the databuffer was not filtered, it is marked as kFilterFull. | |||
| int32_t num_rows = in_buffer->NumRows(); | |||
| std::unique_ptr<TensorQTable> new_tensor_table; | |||
| RETURN_IF_NOT_OK(WorkerCompute(in_buffer.get(), &new_tensor_table)); | |||
| bool result; | |||
| RETURN_IF_NOT_OK(WorkerCompute(in_row, &result)); | |||
| if (new_tensor_table->empty()) { | |||
| RETURN_IF_NOT_OK( | |||
| filter_queues_[worker_id]->EmplaceBack(std::make_pair(std::move(in_buffer), filterCtrl::kFilterEmpty))); | |||
| } else if (new_tensor_table->size() == num_rows) { | |||
| in_buffer->set_tensor_table(std::move(new_tensor_table)); | |||
| if (result) | |||
| RETURN_IF_NOT_OK( | |||
| filter_queues_[worker_id]->EmplaceBack(std::make_pair(std::move(in_buffer), filterCtrl::kFilterFull))); | |||
| } else { // kFilterPartial | |||
| in_buffer->set_tensor_table(std::move(new_tensor_table)); | |||
| filter_queues_[worker_id]->EmplaceBack(std::make_pair(std::move(in_row), filterCtrl::kFilterFull))); | |||
| else | |||
| RETURN_IF_NOT_OK( | |||
| filter_queues_[worker_id]->EmplaceBack(std::make_pair(std::move(in_buffer), filterCtrl::kFilterPartial))); | |||
| } | |||
| filter_queues_[worker_id]->EmplaceBack(std::make_pair(std::move(in_row), filterCtrl::kFilterEmpty))); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status FilterOp::WorkerCompute(DataBuffer *in_buffer, std::unique_ptr<TensorQTable> *out) { | |||
| *out = std::make_unique<TensorQTable>(); | |||
| int32_t num_rows = in_buffer->NumRows(); | |||
| for (int32_t i = 0; i < num_rows; i++) { | |||
| TensorRow to_process; | |||
| TensorRow cur_row; | |||
| RETURN_IF_NOT_OK(in_buffer->PopRow(&cur_row)); | |||
| if (in_columns_.empty() == true) { | |||
| MS_LOG(INFO) << "Input columns in filter operator is empty, will apply to the all column in the current table."; | |||
| to_process = cur_row; | |||
| } else { | |||
| (void)std::transform( | |||
| in_columns_.begin(), in_columns_.end(), std::back_inserter(to_process), | |||
| [&cur_row, this](const auto &it) -> std::shared_ptr<Tensor> { return cur_row[column_name_id_map_[it]]; }); | |||
| } | |||
| bool predicate = true; | |||
| RETURN_IF_NOT_OK(InvokePredicateFunc(to_process, &predicate)); | |||
| if (predicate) { | |||
| (*out)->push_back(std::move(cur_row)); | |||
| } | |||
| Status FilterOp::WorkerCompute(const TensorRow &in_row, bool *out_predicate) { | |||
| TensorRow to_process; | |||
| if (in_columns_.empty() == true) { | |||
| MS_LOG(INFO) << "Input columns in filter operator is empty, will apply to the all column in the current table."; | |||
| to_process = in_row; | |||
| } else { | |||
| (void)std::transform( | |||
| in_columns_.begin(), in_columns_.end(), std::back_inserter(to_process), | |||
| [&in_row, this](const auto &it) -> std::shared_ptr<Tensor> { return in_row[column_name_id_map_[it]]; }); | |||
| } | |||
| RETURN_IF_NOT_OK(InvokePredicateFunc(to_process, out_predicate)); | |||
| return Status::OK(); | |||
| } | |||
| @@ -190,20 +172,24 @@ Status FilterOp::Collector() { | |||
| bool collector_stop = false; | |||
| uint64_t task_id_cnt = 0; | |||
| uint64_t out_id_cnt = 0; | |||
| std::pair<std::unique_ptr<DataBuffer>, filterCtrl> in_pair; | |||
| std::pair<TensorRow, filterCtrl> in_pair; | |||
| while (collector_stop == false) { | |||
| uint32_t w_id = task_id_cnt % num_workers_; | |||
| RETURN_IF_NOT_OK(filter_queues_[w_id]->PopFront(&in_pair)); | |||
| if (in_pair.second == filterCtrl::kFilterFull || in_pair.second == filterCtrl::kFilterPartial || | |||
| in_pair.second == filterCtrl::kFilterEoe) { | |||
| if (in_pair.second == filterCtrl::kFilterEoe) UpdateRepeatAndEpochCounter(); | |||
| uint32_t out_task_id = out_id_cnt % num_workers_; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(static_cast<int>(out_task_id), std::move(in_pair.first))); | |||
| if (in_pair.second == filterCtrl::kFilterEoe) { | |||
| UpdateRepeatAndEpochCounter(); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE(static_cast<int>(out_task_id))); | |||
| } else { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(in_pair.first), static_cast<int>(out_task_id))); | |||
| } | |||
| out_id_cnt++; | |||
| task_id_cnt++; | |||
| } else if (in_pair.second == filterCtrl::kFilterEof) { | |||
| uint32_t out_task_id = out_id_cnt % num_workers_; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(static_cast<int>(out_task_id), std::move(in_pair.first))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF(static_cast<int>(out_task_id))); | |||
| collector_stop = true; | |||
| } else { // kFilterEmpty | |||
| task_id_cnt++; | |||
| @@ -212,18 +198,6 @@ Status FilterOp::Collector() { | |||
| return Status::OK(); | |||
| } | |||
| // Private function for checking the column legality. | |||
| Status FilterOp::CheckColumns(const DataBuffer *in_buf, const std::vector<std::string> *input_columns) { | |||
| int32_t num_rows = in_buf->NumRows(); | |||
| int32_t num_cols = in_buf->NumCols(); | |||
| if (num_rows == 0 || num_cols == 0) { | |||
| RETURN_STATUS_UNEXPECTED("FilterOp is getting an empty DataBuffer."); | |||
| } | |||
| // Check if there is invalid column name in the inColumns. | |||
| RETURN_IF_NOT_OK(ValidateInColumns(input_columns)); | |||
| return Status::OK(); | |||
| } | |||
| Status FilterOp::CheckInput(const TensorRow &input) const { | |||
| for (auto &item : input) { | |||
| if (item == nullptr) { | |||
| @@ -21,6 +21,7 @@ | |||
| #include <string> | |||
| #include <utility> | |||
| #include <vector> | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/datasetops/parallel_op.h" | |||
| #include "minddata/dataset/kernels/tensor_op.h" | |||
| #include "minddata/dataset/util/queue.h" | |||
| @@ -133,7 +134,7 @@ class FilterOp : public ParallelOp { | |||
| std::vector<std::string> in_columns_; | |||
| // Internal queue for filter. | |||
| QueueList<std::pair<std::unique_ptr<DataBuffer>, filterCtrl>> filter_queues_; | |||
| QueueList<std::pair<TensorRow, filterCtrl>> filter_queues_; | |||
| // Private function for worker/thread to loop continuously. It comprises the main | |||
| // logic of FilterOp, getting the data from previous Op, validating user specified column names, | |||
| @@ -143,11 +144,10 @@ class FilterOp : public ParallelOp { | |||
| Status WorkerEntry(int32_t worker_id) override; // In: workerId assigned by tree_ | |||
| // Filter the data by predicate function . | |||
| // @param in_buffer input data buffer. | |||
| // @param to_proess_indices Indices of columns to be processed. | |||
| // @param out data buffer that are filtered by predicate. | |||
| // @param in_row input row. | |||
| // @param out_predicate result boolean to filter or not. | |||
| // @return Status The status code returned | |||
| Status WorkerCompute(DataBuffer *in_buffer, std::unique_ptr<TensorQTable> *out); | |||
| Status WorkerCompute(const TensorRow &in_row, bool *out_predicate); | |||
| // Collector databuffer. | |||
| // @return Status The status code returned | |||
| @@ -167,14 +167,7 @@ class FilterOp : public ParallelOp { | |||
| // exist in the DataBuffer. | |||
| // @param input_columns The vector of input column names used in the current thread. | |||
| // @return Status The status code returned | |||
| Status ValidateInColumns(const std::vector<std::string> *input_columns); | |||
| // Private function for checking the column legality | |||
| // @param in_buf A raw pointer to the DataBuffer. A raw pointer is fine because this function does not manage memory | |||
| // and is not shared with other threads. | |||
| // @param[out] to_process_indices Indices of columns that will feed to predicate. | |||
| // @param input_columns The vector of input column names used in the current thread. | |||
| Status CheckColumns(const DataBuffer *in_buf, const std::vector<std::string> *input_columns); | |||
| Status ValidateInColumns(const std::vector<std::string> &input_columns); | |||
| }; | |||
| } // namespace dataset | |||
| @@ -101,13 +101,12 @@ void MapOp::Print(std::ostream &out, bool show_all) const { | |||
| } | |||
| // A helper function that fetch worker map job from local queues and extract the data and map job list | |||
| Status MapOp::FetchNextWork(uint32_t worker_id, std::unique_ptr<DataBuffer> *db, | |||
| std::vector<std::shared_ptr<MapJob>> *job_list) { | |||
| Status MapOp::FetchNextWork(uint32_t worker_id, TensorRow *row, std::vector<std::shared_ptr<MapJob>> *job_list) { | |||
| std::unique_ptr<MapWorkerJob> worker_job; | |||
| // Fetch the next worker job and data buffer | |||
| RETURN_IF_NOT_OK(local_queues_[worker_id]->PopFront(&worker_job)); | |||
| // Extract the databuffer and job list from the map worker job. | |||
| *db = std::move(worker_job->databuffer); | |||
| *row = std::move(worker_job->tensor_row); | |||
| *job_list = std::move(worker_job->jobs); | |||
| return Status::OK(); | |||
| @@ -166,21 +165,22 @@ Status MapOp::operator()() { | |||
| RETURN_IF_NOT_OK(callback_manager_.Begin(CallbackParam(0, ep_step, total_step))); | |||
| std::unique_ptr<DataBuffer> buff; | |||
| child_iterator_ = std::make_unique<ChildIterator>(this, 0, 0); | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buff, 0)); | |||
| while (!buff->eof()) { | |||
| while (!new_row.eof()) { | |||
| if (op_current_repeats_ % op_num_repeats_per_epoch() == 0) { | |||
| RETURN_IF_NOT_OK(callback_manager_.EpochBegin(CallbackParam(op_current_epochs_ + 1, ep_step, total_step))); | |||
| } | |||
| while (!buff->eoe()) { | |||
| while (!new_row.eoe()) { | |||
| ep_step++; | |||
| total_step++; | |||
| // Create an empty map worker job to be populated by a databuffer and map jobs | |||
| RETURN_IF_NOT_OK(callback_manager_.StepBegin(CallbackParam(op_current_epochs_ + 1, ep_step, total_step))); | |||
| std::unique_ptr<MapWorkerJob> worker_job = std::make_unique<MapWorkerJob>(std::move(buff)); | |||
| std::unique_ptr<MapWorkerJob> worker_job = std::make_unique<MapWorkerJob>(std::move(new_row)); | |||
| // Populate map worker job for a worker to execute | |||
| RETURN_IF_NOT_OK(GenerateWorkerJob(&worker_job)); | |||
| @@ -190,7 +190,7 @@ Status MapOp::operator()() { | |||
| RETURN_IF_NOT_OK(callback_manager_.StepEnd(CallbackParam(op_current_epochs_ + 1, ep_step, total_step))); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buff, 0)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| // check whether this is the end of a real epoch (not all eoe signals end of epoch) | |||
| @@ -200,19 +200,20 @@ Status MapOp::operator()() { | |||
| ep_step = 0; | |||
| } | |||
| // Propagate the eoe buffer to worker | |||
| std::unique_ptr<MapWorkerJob> worker_job = std::make_unique<MapWorkerJob>(std::move(buff)); | |||
| std::unique_ptr<MapWorkerJob> worker_job = std::make_unique<MapWorkerJob>(std::move(new_row)); | |||
| RETURN_IF_NOT_OK(local_queues_[num_buf++ % num_workers_]->Add(std::move(worker_job))); | |||
| UpdateRepeatAndEpochCounter(); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buff, 0)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| // End() is commented out because it might never be called due to the lack of EOF when EpochCtrl is -1 | |||
| // Handle eof logic, this code might never be reached if epoch_ctrl = -1. | |||
| std::unique_ptr<MapWorkerJob> worker_job = std::make_unique<MapWorkerJob>(std::move(buff)); | |||
| std::unique_ptr<MapWorkerJob> worker_job = std::make_unique<MapWorkerJob>(std::move(new_row)); | |||
| RETURN_IF_NOT_OK(local_queues_[num_buf++ % num_workers_]->Add(std::move(worker_job))); | |||
| // Quit all workers, this code might never be reached if EpochCtrl is -1. | |||
| for (int32_t wkr_id = 0; wkr_id < num_workers_; wkr_id++) { | |||
| auto quit = std::make_unique<MapWorkerJob>(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagQuit)); | |||
| TensorRow quit_flag(TensorRow::kFlagQuit); | |||
| auto quit = std::make_unique<MapWorkerJob>(quit_flag); | |||
| RETURN_IF_NOT_OK(local_queues_[num_buf++ % num_workers_]->Add(std::move(quit))); | |||
| } | |||
| @@ -227,78 +228,73 @@ Status MapOp::WorkerEntry(int32_t worker_id) { | |||
| // Handshake with TaskManager that thread creation is successful. | |||
| TaskManager::FindMe()->Post(); | |||
| std::unique_ptr<DataBuffer> in_buffer; | |||
| TensorRow in_row; | |||
| std::vector<std::shared_ptr<MapJob>> job_list; | |||
| // Fetch next data buffer and map job list | |||
| RETURN_IF_NOT_OK(FetchNextWork(worker_id, &in_buffer, &job_list)); | |||
| RETURN_IF_NOT_OK(FetchNextWork(worker_id, &in_row, &job_list)); | |||
| // Now that init work is done, drop into the main fetching loop. | |||
| // Map op does not use child iterator, and it needs to manually handle eoe and eof's itself | |||
| // rather than use the base-class defaults. | |||
| while (true) { | |||
| // Handle special logic where buffer carries a ctrl flag. | |||
| if (in_buffer->buffer_flags() != DataBuffer::kDeBFlagNone) { | |||
| if (in_buffer->wait()) { | |||
| if (in_row.Flags() != TensorRow::kFlagNone) { | |||
| if (in_row.wait()) { | |||
| // When worker receives the signal from master thread, it increments a atomic int | |||
| // The last guy who increments the counter, wakes up master thread | |||
| if (++num_workers_paused_ == num_workers_) { | |||
| wait_for_workers_post_.Set(); | |||
| } | |||
| // This will block the worker until master thread gives it a new work | |||
| } else if (in_buffer->eoe()) { | |||
| } else if (in_row.eoe()) { | |||
| // Calling base class EoeReceived to forward eoe buffer. | |||
| RETURN_IF_NOT_OK(EoeReceived(worker_id)); | |||
| } else if (in_buffer->eof()) { | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE(worker_id)); | |||
| } else if (in_row.eof()) { | |||
| // Calling base class EofReceived to forward eof buffer. | |||
| RETURN_IF_NOT_OK(EofReceived(worker_id)); | |||
| } else if (in_buffer->quit()) { | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF(worker_id)); | |||
| } else if (in_row.quit()) { | |||
| break; | |||
| } | |||
| RETURN_IF_NOT_OK(FetchNextWork(worker_id, &in_buffer, &job_list)); | |||
| RETURN_IF_NOT_OK(FetchNextWork(worker_id, &in_row, &job_list)); | |||
| continue; | |||
| } | |||
| CHECK_FAIL_RETURN_UNEXPECTED(in_buffer->NumRows() * in_buffer->NumCols() != 0, "MapOp got an empty DataBuffer."); | |||
| std::unique_ptr<TensorQTable> new_tensor_table(std::make_unique<TensorQTable>()); | |||
| CHECK_FAIL_RETURN_UNEXPECTED(in_row.size() != 0, "MapOp got an empty TensorRow."); | |||
| TensorRow out_row; | |||
| // Perform the compute function of TensorOp(s) and store the result in new_tensor_table. | |||
| RETURN_IF_NOT_OK(WorkerCompute(in_buffer.get(), new_tensor_table.get(), job_list)); | |||
| RETURN_IF_NOT_OK(WorkerCompute(in_row, &out_row, job_list)); | |||
| // Replace the TensorTable in DataBuffer with the new one. | |||
| in_buffer->set_tensor_table(std::move(new_tensor_table)); | |||
| // Push the buffer onto the connector for next operator to consume. | |||
| RETURN_IF_NOT_OK(out_connector_->Add(static_cast<int>(worker_id), std::move(in_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(out_row), static_cast<int>(worker_id))); | |||
| // Fetch next data buffer and map job list | |||
| RETURN_IF_NOT_OK(FetchNextWork(worker_id, &in_buffer, &job_list)); | |||
| RETURN_IF_NOT_OK(FetchNextWork(worker_id, &in_row, &job_list)); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status MapOp::WorkerCompute(DataBuffer *in_buffer, TensorQTable *new_tensor_table, | |||
| Status MapOp::WorkerCompute(const TensorRow &in_row, TensorRow *out_row, | |||
| const std::vector<std::shared_ptr<MapJob>> &job_list) { | |||
| int32_t num_rows = in_buffer->NumRows(); | |||
| int32_t num_cols = in_buffer->NumCols(); | |||
| int32_t num_cols = in_row.size(); | |||
| std::vector<TensorRow> job_input_table; | |||
| std::vector<TensorRow> original_table; | |||
| // Prepare the data that we need from in_buffer | |||
| for (int32_t r = 0; r < num_rows; r++) { | |||
| // to_process : A vector of Tensors only holding cols in input_columns. | |||
| // cur_row : A vector of Tensors holding all the cols from DataBuffer. | |||
| TensorRow to_process, cur_row; | |||
| RETURN_IF_NOT_OK(in_buffer->PopRow(&cur_row)); | |||
| // From the current row, select the Tensor that need to be passed to TensorOp | |||
| (void)std::transform(to_process_indices_.begin(), to_process_indices_.end(), std::back_inserter(to_process), | |||
| [&cur_row](const auto &it) { return std::move(cur_row[it]); }); | |||
| to_process.setId(cur_row.getId()); | |||
| std::vector<std::string> cur_row_path = cur_row.getPath(); | |||
| if (cur_row_path.size() > 0) { | |||
| std::vector<std::string> to_process_path; | |||
| (void)std::transform(to_process_indices_.begin(), to_process_indices_.end(), std::back_inserter(to_process_path), | |||
| [&cur_row_path](const auto &it) { return cur_row_path[it]; }); | |||
| to_process.setPath(to_process_path); | |||
| } | |||
| job_input_table.push_back(std::move(to_process)); | |||
| original_table.push_back(std::move(cur_row)); | |||
| TensorRow to_process; | |||
| // Prepare the data that we need from in_row | |||
| // to_process : A vector of Tensors only holding cols in input_columns. | |||
| // cur_row : A vector of Tensors holding all the cols from DataBuffer. | |||
| // From the current row, select the Tensor that need to be passed to TensorOp | |||
| (void)std::transform(to_process_indices_.begin(), to_process_indices_.end(), std::back_inserter(to_process), | |||
| [&in_row](const auto &it) { return std::move(in_row[it]); }); | |||
| to_process.setId(in_row.getId()); | |||
| std::vector<std::string> cur_row_path = in_row.getPath(); | |||
| if (cur_row_path.size() > 0) { | |||
| std::vector<std::string> to_process_path; | |||
| (void)std::transform(to_process_indices_.begin(), to_process_indices_.end(), std::back_inserter(to_process_path), | |||
| [&cur_row_path](const auto &it) { return cur_row_path[it]; }); | |||
| to_process.setPath(to_process_path); | |||
| } | |||
| job_input_table.push_back(std::move(to_process)); | |||
| original_table.push_back(std::move(in_row)); | |||
| // Variable to keep the result after executing the job. | |||
| std::vector<TensorRow> result_table; | |||
| @@ -319,26 +315,22 @@ Status MapOp::WorkerCompute(DataBuffer *in_buffer, TensorQTable *new_tensor_tabl | |||
| } | |||
| // Merging the data processed by job (result_table) with the data that are not used. | |||
| for (int32_t r = 0; r < num_rows; r++) { | |||
| TensorRow out_row; | |||
| if (in_columns_.size() == out_columns_.size()) { | |||
| // Place the processed tensor back into the original index of the input tensor | |||
| for (size_t i = 0; i < result_table[r].size(); i++) { | |||
| original_table[r][to_process_indices_[i]] = std::move(result_table[r][i]); | |||
| } | |||
| out_row = std::move(original_table[r]); | |||
| } else { | |||
| // Append the data in the original table that we did not use to the end of each row in result_table. | |||
| for (int32_t i = 0; i < num_cols; i++) { | |||
| if (keep_input_columns_[i]) { | |||
| result_table[r].push_back(std::move(original_table[r][i])); | |||
| } | |||
| if (in_columns_.size() == out_columns_.size()) { | |||
| // Place the processed tensor back into the original index of the input tensor | |||
| for (size_t i = 0; i < result_table[0].size(); i++) { | |||
| original_table[0][to_process_indices_[i]] = std::move(result_table[0][i]); | |||
| } | |||
| *out_row = std::move(original_table[0]); | |||
| } else { | |||
| // Append the data in the original table that we did not use to the end of each row in result_table. | |||
| for (int32_t i = 0; i < num_cols; i++) { | |||
| if (keep_input_columns_[i]) { | |||
| result_table[0].push_back(std::move(original_table[0][i])); | |||
| } | |||
| out_row = std::move(result_table[r]); | |||
| } | |||
| // Add this final out_row to our new TensorTable. | |||
| new_tensor_table->push_back(std::move(out_row)); | |||
| *out_row = std::move(result_table[0]); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| @@ -451,8 +443,8 @@ Status MapOp::WaitForWorkers() { | |||
| num_workers_paused_ = 0; | |||
| for (int32_t wkr_id = 0; wkr_id < num_workers_; wkr_id++) { | |||
| // a special buffer (id=-1, empty, none flag) is used to signal that worker needs to pause. | |||
| RETURN_IF_NOT_OK(local_queues_[wkr_id]->Add( | |||
| std::make_unique<MapWorkerJob>(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagWait)))); | |||
| TensorRow waitRow(TensorRow::kFlagWait); | |||
| RETURN_IF_NOT_OK(local_queues_[wkr_id]->Add(std::make_unique<MapWorkerJob>(waitRow))); | |||
| } | |||
| // wait until all workers are done processing their work in local_queue_ | |||
| RETURN_IF_NOT_OK(wait_for_workers_post_.Wait()); | |||
| @@ -24,6 +24,7 @@ | |||
| #include <vector> | |||
| #include "minddata/dataset/callback/ds_callback.h" | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/datasetops/map_op/map_job.h" | |||
| #include "minddata/dataset/engine/datasetops/parallel_op.h" | |||
| #include "minddata/dataset/kernels/tensor_op.h" | |||
| @@ -192,17 +193,16 @@ class MapOp : public ParallelOp { | |||
| // A unit of job for map worker thread. | |||
| // MapWorkerJob holds a list of MapJob where each MapJob can be a CpuMapJob, GpuMapJob or DvppMapJob. | |||
| struct MapWorkerJob { | |||
| explicit MapWorkerJob(std::unique_ptr<DataBuffer> db) : databuffer(std::move(db)) {} | |||
| explicit MapWorkerJob(TensorRow tr) : tensor_row(std::move(tr)) {} | |||
| std::vector<std::shared_ptr<MapJob>> jobs; | |||
| std::unique_ptr<DataBuffer> databuffer; | |||
| TensorRow tensor_row; | |||
| }; | |||
| // A helper function to create jobs for workers. | |||
| Status GenerateWorkerJob(const std::unique_ptr<MapWorkerJob> *worker_job); | |||
| // A helper function that fetch worker map job from local queues and extract the data and map job list | |||
| Status FetchNextWork(uint32_t worker_id, std::unique_ptr<DataBuffer> *db, | |||
| std::vector<std::shared_ptr<MapJob>> *job_list); | |||
| Status FetchNextWork(uint32_t worker_id, TensorRow *row, std::vector<std::shared_ptr<MapJob>> *job_list); | |||
| // Local queues where worker threads get a job from | |||
| QueueList<std::unique_ptr<MapWorkerJob>> local_queues_; | |||
| @@ -222,6 +222,8 @@ class MapOp : public ParallelOp { | |||
| // Indices of the columns to process. | |||
| std::vector<size_t> to_process_indices_; | |||
| std::unique_ptr<ChildIterator> child_iterator_; // An iterator for fetching. | |||
| // Private function for worker/thread to loop continuously. It comprises the main | |||
| // logic of MapOp: getting the data from previous Op, validating user specified column names, | |||
| // applying a list of TensorOps to each of the data, process the results and then | |||
| @@ -234,7 +236,7 @@ class MapOp : public ParallelOp { | |||
| // @param in_buffer A raw pointer to the DataBuffer. A raw pointer is fine because this function doesn't manage memory | |||
| // and is not shared with other threads. | |||
| // @param[out] new_tensor_table A new Tensor Table to be populated in this function. | |||
| Status WorkerCompute(DataBuffer *in_buffer, TensorQTable *new_tensor_table, | |||
| Status WorkerCompute(const TensorRow &in_row, TensorRow *out_row, | |||
| const std::vector<std::shared_ptr<MapJob>> &job_list); | |||
| // Private function that create the final column name to index mapping and | |||
| @@ -67,32 +67,25 @@ void ProjectOp::Print(std::ostream &out, bool show_all) const { | |||
| } | |||
| // Gets a buffer from the child operator and projects the buffer. | |||
| Status ProjectOp::GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) { | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(p_buffer, worker_id, retry_if_eoe)); | |||
| if (!((*p_buffer)->eoe()) && !((*p_buffer)->eof())) { | |||
| RETURN_IF_NOT_OK(Project(p_buffer)); | |||
| Status ProjectOp::GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe) { | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRow(row, worker_id, retry_if_eoe)); | |||
| if (!row->eoe() && !row->eof()) { | |||
| *row = Project(*row); | |||
| } | |||
| if ((*p_buffer)->eoe()) { | |||
| if (row->eoe()) { | |||
| UpdateRepeatAndEpochCounter(); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| Status ProjectOp::Project(std::unique_ptr<DataBuffer> *data_buffer) { | |||
| std::unique_ptr<TensorQTable> new_tensor_table = std::make_unique<TensorQTable>(); | |||
| while ((*data_buffer)->NumRows() > 0) { | |||
| TensorRow current_row; | |||
| RETURN_IF_NOT_OK((*data_buffer)->PopRow(¤t_row)); | |||
| TensorRow new_row; | |||
| (void)std::transform(projected_column_indices_.begin(), projected_column_indices_.end(), | |||
| std::back_inserter(new_row), [¤t_row](uint32_t x) { return current_row[x]; }); | |||
| // Now if columns changed after map, we don't know which column we should keep, | |||
| // so temporarily we don't support print file_path after ProjectOp. | |||
| new_row.setPath({}); | |||
| new_tensor_table->push_back(new_row); | |||
| } | |||
| (*data_buffer)->set_tensor_table(std::move(new_tensor_table)); | |||
| return Status::OK(); | |||
| TensorRow ProjectOp::Project(const TensorRow &row) { | |||
| TensorRow new_row; | |||
| (void)std::transform(projected_column_indices_.begin(), projected_column_indices_.end(), std::back_inserter(new_row), | |||
| [&row](uint32_t x) { return row[x]; }); | |||
| // Now if columns changed after map, we don't know which column we should keep, | |||
| // so temporarily we don't support print file_path after ProjectOp. | |||
| new_row.setPath({}); | |||
| return new_row; | |||
| } | |||
| // Class functor operator () override. | |||
| @@ -152,10 +145,10 @@ Status ProjectOp::ComputeColMap() { | |||
| return Status::OK(); | |||
| } | |||
| Status ProjectOp::GetNextRow(TensorRow *row) { | |||
| Status ProjectOp::GetNextRowPullMode(TensorRow *row) { | |||
| ComputeColMap(); | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRow(&new_row)); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRowPullMode(&new_row)); | |||
| (void)std::transform(projected_column_indices_.begin(), projected_column_indices_.end(), std::back_inserter(*row), | |||
| [&new_row](uint32_t x) { return new_row[x]; }); | |||
| // Now if columns changed after map, we don't know which column we should keep, | |||
| @@ -81,7 +81,7 @@ class ProjectOp : public PipelineOp { | |||
| // Gets a buffer from the child node and projects that buffer. The caller is typically our parent node. | |||
| // @param p_buffer - output pointer to the projected buffer. | |||
| // @param worker_id - The worker id | |||
| Status GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) override; | |||
| Status GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe) override; | |||
| // Base-class override. Return the number of workers in the first parent. | |||
| // @param workerId - The worker id | |||
| @@ -101,7 +101,7 @@ class ProjectOp : public PipelineOp { | |||
| // @return Status The status code returned | |||
| Status EofReceived(int32_t worker_id) override; | |||
| Status GetNextRow(TensorRow *row) override; | |||
| Status GetNextRowPullMode(TensorRow *row) override; | |||
| // Op name getter | |||
| // @return Name of the current Op | |||
| @@ -111,7 +111,7 @@ class ProjectOp : public PipelineOp { | |||
| std::vector<std::string> columns_to_project_; | |||
| std::vector<int32_t> projected_column_indices_; | |||
| Status Project(std::unique_ptr<DataBuffer> *data_buffer); | |||
| TensorRow Project(const TensorRow &row); | |||
| // Computing the assignment of the column name map. | |||
| // @return - Status | |||
| @@ -59,32 +59,24 @@ RenameOp::~RenameOp() {} | |||
| // main entry point for rename | |||
| Status RenameOp::operator()() { | |||
| TaskManager::FindMe()->Post(); | |||
| std::unique_ptr<DataBuffer> curr_buffer; | |||
| RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); | |||
| if (curr_buffer->buffer_flags() != DataBuffer::kDeBFlagNone) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(curr_buffer))); | |||
| std::string err_msg = "Rename first buffer got was control signal"; | |||
| // if 1st eoe or eof, pass it on then return | |||
| RETURN_STATUS_UNEXPECTED(err_msg); | |||
| } | |||
| child_iterator_ = std::make_unique<ChildIterator>(this, 0, 0); | |||
| while (curr_buffer->eof() == false) { | |||
| while (curr_buffer->eoe() == false) { | |||
| // push the renamed input buffer | |||
| MS_LOG(DEBUG) << "Rename operator pushing next buffer."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(curr_buffer))); | |||
| RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); | |||
| } // end of while eoe loop | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| // we got eoe, now try again until we get eof | |||
| while (!new_row.eof()) { | |||
| while (!new_row.eoe()) { | |||
| MS_LOG(DEBUG) << "Rename operator pushing next buffer."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row))); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| MS_LOG(DEBUG) << "Rename operator EOE Received."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)))); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| MS_LOG(DEBUG) << "Rename operator fetching buffer after EOE."; | |||
| RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); | |||
| } // end of while eof loop | |||
| MS_LOG(DEBUG) << "Rename opeerator EOF Received."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)))); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| MS_LOG(DEBUG) << "Rename operator EOF Received."; | |||
| return Status::OK(); | |||
| } | |||
| @@ -21,6 +21,7 @@ | |||
| #include <string> | |||
| #include <vector> | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/datasetops/pipeline_op.h" | |||
| #include "minddata/dataset/util/status.h" | |||
| @@ -125,6 +126,8 @@ class RenameOp : public PipelineOp { | |||
| // Variable to store the output column names | |||
| std::vector<std::string> out_columns_; | |||
| std::unique_ptr<ChildIterator> child_iterator_; // An iterator for fetching. | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -78,27 +78,24 @@ void RepeatOp::Print(std::ostream &out, bool show_all) const { | |||
| // a buffer from our child. | |||
| // This function sets the `retryIfEoe` flag when popping from the child connector. This way, | |||
| // this function will retry to pop the connector again and will get the non-EOE buffer if any. | |||
| Status RepeatOp::GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) { | |||
| Status RepeatOp::GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe) { | |||
| if (child_.empty()) { | |||
| RETURN_STATUS_UNEXPECTED("Pipeline init failed, RepeatOp can't be the first op in pipeline."); | |||
| } | |||
| std::unique_ptr<DataBuffer> buf; | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf, worker_id, true)); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRow(row, worker_id, true)); | |||
| // Loop until non EOE is received | |||
| while (buf->eoe()) { | |||
| while (row->eoe()) { | |||
| RETURN_IF_NOT_OK(EoeReceived(worker_id)); | |||
| if (state_ == OpState::kDeOpIdle) { | |||
| *p_buffer = std::move(buf); | |||
| return Status::OK(); | |||
| } | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf, worker_id, true)); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextRow(row, worker_id, true)); | |||
| } | |||
| // Check if the last buf is next eof | |||
| if (buf->eof()) { | |||
| if (row->eof()) { | |||
| RETURN_IF_NOT_OK(EofReceived(worker_id)); | |||
| } | |||
| *p_buffer = std::move(buf); | |||
| return Status::OK(); | |||
| } | |||
| @@ -91,7 +91,7 @@ class RepeatOp : public PipelineOp { | |||
| // @param worker_id - The worker id | |||
| // @param retry_if_eoe Set this flag to true to allow calling pop() again after the first pop() returns EOE. | |||
| // @return Status The status code returned | |||
| Status GetNextBuffer(std::unique_ptr<DataBuffer> *p_buffer, int32_t worker_id, bool retry_if_eoe) override; | |||
| Status GetNextRow(TensorRow *row, int32_t worker_id, bool retry_if_eoe) override; | |||
| // Base-class override for handling cases when an eoe is received. | |||
| // @param worker_id - The worker id | |||
| @@ -152,6 +152,7 @@ Status ShuffleOp::operator()() { | |||
| // This is our main loop exit condition, when the iterator has no more data completely. | |||
| if (child_iterator_->eof_handled()) { | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| break; | |||
| } | |||
| @@ -170,21 +171,11 @@ Status ShuffleOp::operator()() { | |||
| // tensor table. We remove the data from the shuffle buffer, leaving that slot | |||
| // in the table as an empty vector | |||
| int64_t random_slot = rng_() % (shuffle_last_row_idx_ + 1); | |||
| new_buffer_table->push_back(std::move((*shuffle_buffer_)[random_slot])); | |||
| TensorRow random_row = std::move((*shuffle_buffer_)[random_slot]); | |||
| MS_LOG(DEBUG) << "Shuffle operator sending a row to output."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(random_row))); | |||
| // Step 3) | |||
| // If the output tensor table is at the requested size, then create a buffer for it | |||
| // and send this buffer on it's way up the pipeline. Special case is if this is the | |||
| // last row then we also send it. | |||
| if (new_buffer_table->size() == rows_per_buffer_ || shuffle_last_row_idx_ == 0) { | |||
| auto new_buffer = std::make_unique<DataBuffer>(buffer_counter_, DataBuffer::kDeBFlagNone); | |||
| new_buffer->set_tensor_table(std::move(new_buffer_table)); | |||
| buffer_counter_++; | |||
| MS_LOG(DEBUG) << "Shuffle operator sending a buffer to output."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(new_buffer))); | |||
| } | |||
| // Step 4) | |||
| // Take the last row from shuffle buffer, and swap it into the row position that was | |||
| // just vacated. This makes the shuffle buffer contiguous, with an empty slot at the | |||
| // tail of the shuffle buffer. | |||
| @@ -192,7 +183,7 @@ Status ShuffleOp::operator()() { | |||
| (*shuffle_buffer_)[random_slot] = std::move((*shuffle_buffer_)[shuffle_last_row_idx_]); | |||
| } | |||
| // Step 5) | |||
| // Step 4) | |||
| // Refill the last slot of the shuffle buffer with the next row from input if we are in the | |||
| // active state. | |||
| // If we are in the draining state, we do not need to fetch another row to replace the one we | |||
| @@ -218,14 +209,14 @@ Status ShuffleOp::operator()() { | |||
| // Since we overloaded eoeReceived function, we are responsible to flow the EOE up the | |||
| // pipeline manually now that we are done draining the shuffle buffer | |||
| MS_LOG(DEBUG) << "Shuffle operator sending EOE."; | |||
| auto eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| // Do not wait for any reset to be flown down from operators above us. | |||
| // Instead, manually update ourselves and then go reloop to start fetching from child operator | |||
| // right away. Any Reset() from the parent will still perform common reset actions. | |||
| RETURN_IF_NOT_OK(this->SelfReset()); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| @@ -252,6 +243,7 @@ Status ShuffleOp::InitShuffleBuffer() { | |||
| if (child_iterator_->eof_handled()) { | |||
| MS_LOG(DEBUG) << "Shuffle operator init picked up EOF. No more epochs."; | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| @@ -19,9 +19,9 @@ | |||
| #include "minddata/dataset/core/config_manager.h" | |||
| #include "minddata/dataset/engine/data_buffer.h" | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/datasetops/skip_op.h" | |||
| #include "minddata/dataset/engine/db_connector.h" | |||
| #include "minddata/dataset/engine/execution_tree.h" | |||
| #include "minddata/dataset/util/log_adapter.h" | |||
| namespace mindspore { | |||
| @@ -69,57 +69,32 @@ void SkipOp::Print(std::ostream &out, bool show_all) const { | |||
| } | |||
| } | |||
| // Base-class override for handling cases when an eoe is received. | |||
| Status SkipOp::EoeReceived(int32_t worker_id) { | |||
| skip_count_ = 0; | |||
| state_ = OpState::kDeOpIdle; | |||
| return Status::OK(); | |||
| } | |||
| // main entry point for skip | |||
| Status SkipOp::operator()() { | |||
| TaskManager::FindMe()->Post(); | |||
| std::unique_ptr<DataBuffer> curr_buffer; | |||
| RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); | |||
| child_iterator_ = std::make_unique<ChildIterator>(this, 0, 0); | |||
| while (curr_buffer->eof() == false) { | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| while (!new_row.eof()) { | |||
| // Reset count | |||
| skip_count_ = 0; | |||
| while (curr_buffer->eoe() == false) { | |||
| while (!new_row.eoe()) { | |||
| // Drop first count rows | |||
| while (skip_count_ < max_skips_) { | |||
| if (curr_buffer->eoe() || curr_buffer->eof()) { | |||
| break; | |||
| } | |||
| // Consider the rows of buffer more than one | |||
| TensorRow drop_row; | |||
| int row_num = curr_buffer->NumRows(); | |||
| int drop_num = row_num + skip_count_ < max_skips_ ? row_num : max_skips_ - skip_count_; | |||
| skip_count_ += drop_num; | |||
| for (int i = 0; i < drop_num; i++) { | |||
| RETURN_IF_NOT_OK(curr_buffer->PopRow(&drop_row)); | |||
| } | |||
| if (curr_buffer->NumRows() == 0) { | |||
| RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); | |||
| } | |||
| if (skip_count_ < max_skips_) { | |||
| skip_count_++; | |||
| } else { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row))); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(curr_buffer))); | |||
| RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| // we got eoe, now try again until we got eof | |||
| MS_LOG(DEBUG) << "Skip operator EOE Received."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)))); | |||
| RETURN_IF_NOT_OK(GetNextInput(&curr_buffer)); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| MS_LOG(DEBUG) << "Skip operator EOF Received."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)))); | |||
| return Status::OK(); | |||
| } | |||
| // Base-class override for handling cases when an eof is received. | |||
| Status SkipOp::EofReceived(int32_t worker_id) { | |||
| MS_LOG(DEBUG) << "Skip operator EOF received, do nothing now."; | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| @@ -66,14 +66,6 @@ class SkipOp : public PipelineOp { | |||
| // @return Status The status code returned | |||
| Status operator()() override; | |||
| // Base-class override for handling cases when an eoe is received. | |||
| // @param worker_id - The worker id | |||
| Status EoeReceived(int32_t worker_id) override; | |||
| // Base-class override for handling cases when an eof is received. | |||
| // @param worker_id - The worker id | |||
| Status EofReceived(int32_t worker_id) override; | |||
| // Op name getter | |||
| // @return Name of the current Op | |||
| std::string Name() const override { return kSkipOp; } | |||
| @@ -81,6 +73,8 @@ class SkipOp : public PipelineOp { | |||
| private: | |||
| int32_t max_skips_; // The number of skips that the user requested | |||
| int32_t skip_count_; // A counter for the current number of executed skips | |||
| std::unique_ptr<ChildIterator> child_iterator_; // An iterator for fetching. | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -485,7 +485,7 @@ Status AlbumOp::ComputeColMap() { | |||
| return Status::OK(); | |||
| } | |||
| Status AlbumOp::GetNextRow(TensorRow *row) { | |||
| Status AlbumOp::GetNextRowPullMode(TensorRow *row) { | |||
| if (image_rows_.empty()) PrescanEntry(); | |||
| if (sample_ids_ == nullptr) { | |||
| RETURN_IF_NOT_OK(this->InitSampler()); | |||
| @@ -267,7 +267,7 @@ class AlbumOp : public MappableLeafOp { | |||
| /// \return Status The status code returned | |||
| Status LaunchThreadsAndInitOp() override; | |||
| Status GetNextRow(TensorRow *row) override; | |||
| Status GetNextRowPullMode(TensorRow *row) override; | |||
| /// Private function for computing the assignment of the column name map. | |||
| /// \return Status The status code returned | |||
| @@ -145,11 +145,8 @@ Status ClueOp::LoadFile(const std::string &file, int64_t start_offset, int64_t e | |||
| RETURN_STATUS_UNEXPECTED("Invalid file, failed to open file: " + file); | |||
| } | |||
| int64_t rows_each_buffer = 0; | |||
| int64_t rows_total = 0; | |||
| std::string line; | |||
| std::unique_ptr<DataBuffer> cur_buffer = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| std::unique_ptr<TensorQTable> tensor_table = std::make_unique<TensorQTable>(); | |||
| while (getline(handle, line)) { | |||
| if (line.empty()) { | |||
| @@ -177,31 +174,18 @@ Status ClueOp::LoadFile(const std::string &file, int64_t start_offset, int64_t e | |||
| // Add file path info | |||
| std::vector<std::string> file_path(cols_count, file); | |||
| tRow.setPath(file_path); | |||
| tensor_table->push_back(std::move(tRow)); | |||
| int cout = 0; | |||
| for (auto &p : cols_to_keyword_) { | |||
| std::shared_ptr<Tensor> tensor; | |||
| RETURN_IF_NOT_OK(GetValue(js, p.second, &tensor)); | |||
| (*tensor_table)[rows_each_buffer][cout] = std::move(tensor); | |||
| tRow[cout] = std::move(tensor); | |||
| cout++; | |||
| } | |||
| rows_each_buffer++; | |||
| rows_total++; | |||
| if (rows_each_buffer == rows_per_buffer_) { | |||
| cur_buffer->set_tensor_table(std::move(tensor_table)); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(cur_buffer))); | |||
| cur_buffer = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| tensor_table = std::make_unique<TensorQTable>(); | |||
| rows_each_buffer = 0; | |||
| } | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(tRow))); | |||
| } | |||
| if (rows_each_buffer > 0) { | |||
| cur_buffer->set_tensor_table(std::move(tensor_table)); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(cur_buffer))); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| @@ -101,20 +101,17 @@ CsvOp::CsvParser::CsvParser(int32_t worker_id, JaggedConnector *connector, int64 | |||
| file_path_(file_path), | |||
| cur_state_(START_OF_FILE), | |||
| pos_(0), | |||
| cur_row_(0), | |||
| cur_col_(0), | |||
| total_rows_(0), | |||
| start_offset_(0), | |||
| end_offset_(std::numeric_limits<int64_t>::max()), | |||
| err_message_("unknown") { | |||
| cur_buffer_ = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| InitCsvParser(); | |||
| } | |||
| void CsvOp::CsvParser::Reset() { | |||
| cur_state_ = START_OF_FILE; | |||
| pos_ = 0; | |||
| cur_row_ = 0; | |||
| cur_col_ = 0; | |||
| } | |||
| @@ -170,11 +167,11 @@ int CsvOp::CsvParser::PutRecord(int c) { | |||
| Tensor::CreateScalar(s, &t); | |||
| break; | |||
| } | |||
| if (cur_col_ >= (*tensor_table_)[cur_row_].size()) { | |||
| if (cur_col_ >= cur_row_.size()) { | |||
| err_message_ = "Number of file columns does not match the tensor table"; | |||
| return -1; | |||
| } | |||
| (*tensor_table_)[cur_row_][cur_col_] = std::move(t); | |||
| cur_row_[cur_col_] = std::move(t); | |||
| pos_ = 0; | |||
| cur_col_++; | |||
| return 0; | |||
| @@ -203,18 +200,10 @@ int CsvOp::CsvParser::PutRow(int c) { | |||
| } | |||
| total_rows_++; | |||
| cur_row_++; | |||
| cur_col_ = 0; | |||
| if (cur_row_ == csv_rows_per_buffer_) { | |||
| cur_buffer_->set_tensor_table(std::move(tensor_table_)); | |||
| buffer_connector_->Add(worker_id_, std::move(cur_row_)); | |||
| buffer_connector_->Add(worker_id_, std::move(cur_buffer_)); | |||
| cur_buffer_ = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| tensor_table_ = std::make_unique<TensorQTable>(); | |||
| cur_row_ = 0; | |||
| } | |||
| return 0; | |||
| } | |||
| @@ -230,11 +219,6 @@ int CsvOp::CsvParser::EndFile(int c) { | |||
| return ret; | |||
| } | |||
| } | |||
| if (cur_row_ > 0) { | |||
| cur_buffer_->set_tensor_table(std::move(tensor_table_)); | |||
| buffer_connector_->Add(worker_id_, std::move(cur_buffer_)); | |||
| } | |||
| return 0; | |||
| } | |||
| @@ -345,8 +329,7 @@ Status CsvOp::CsvParser::InitCsvParser() { | |||
| TensorRow row(column_default_.size(), nullptr); | |||
| std::vector<std::string> file_path(column_default_.size(), file_path_); | |||
| row.setPath(file_path); | |||
| this->tensor_table_ = std::make_unique<TensorQTable>(); | |||
| this->tensor_table_->push_back(row); | |||
| this->cur_row_ = std::move(row); | |||
| this->str_buf_[0] = c; | |||
| this->pos_ = 1; | |||
| return 0; | |||
| @@ -357,8 +340,7 @@ Status CsvOp::CsvParser::InitCsvParser() { | |||
| TensorRow row(column_default_.size(), nullptr); | |||
| std::vector<std::string> file_path(column_default_.size(), file_path_); | |||
| row.setPath(file_path); | |||
| this->tensor_table_ = std::make_unique<TensorQTable>(); | |||
| this->tensor_table_->push_back(row); | |||
| this->cur_row_ = std::move(row); | |||
| return this->PutRecord(c); | |||
| }}}, | |||
| {{State::START_OF_FILE, Message::MS_QUOTE}, | |||
| @@ -367,8 +349,7 @@ Status CsvOp::CsvParser::InitCsvParser() { | |||
| TensorRow row(column_default_.size(), nullptr); | |||
| std::vector<std::string> file_path(column_default_.size(), file_path_); | |||
| row.setPath(file_path); | |||
| this->tensor_table_ = std::make_unique<TensorQTable>(); | |||
| this->tensor_table_->push_back(row); | |||
| this->cur_row_ = std::move(row); | |||
| this->pos_ = 0; | |||
| return 0; | |||
| }}}, | |||
| @@ -454,7 +435,7 @@ Status CsvOp::CsvParser::InitCsvParser() { | |||
| TensorRow row(column_default_.size(), nullptr); | |||
| std::vector<std::string> file_path(column_default_.size(), file_path_); | |||
| row.setPath(file_path); | |||
| this->tensor_table_->push_back(row); | |||
| this->cur_row_ = std::move(row); | |||
| } | |||
| this->str_buf_[0] = c; | |||
| this->pos_ = 1; | |||
| @@ -467,7 +448,7 @@ Status CsvOp::CsvParser::InitCsvParser() { | |||
| TensorRow row(column_default_.size(), nullptr); | |||
| std::vector<std::string> file_path(column_default_.size(), file_path_); | |||
| row.setPath(file_path); | |||
| this->tensor_table_->push_back(row); | |||
| this->cur_row_ = std::move(row); | |||
| } | |||
| return this->PutRecord(c); | |||
| }}}, | |||
| @@ -478,7 +459,7 @@ Status CsvOp::CsvParser::InitCsvParser() { | |||
| TensorRow row(column_default_.size(), nullptr); | |||
| std::vector<std::string> file_path(column_default_.size(), file_path_); | |||
| row.setPath(file_path); | |||
| this->tensor_table_->push_back(row); | |||
| this->cur_row_ = std::move(row); | |||
| } | |||
| return 0; | |||
| }}}, | |||
| @@ -133,7 +133,6 @@ class CsvOp : public NonMappableLeafOp { | |||
| std::vector<std::shared_ptr<CsvOp::BaseRecord>> column_default_; | |||
| State cur_state_; | |||
| size_t pos_; | |||
| int cur_row_; | |||
| int cur_col_; | |||
| int64_t total_rows_; | |||
| int64_t start_offset_; | |||
| @@ -141,8 +140,7 @@ class CsvOp : public NonMappableLeafOp { | |||
| StateDiagram sd; | |||
| StateDiagram sdl; | |||
| std::vector<char> str_buf_; | |||
| std::unique_ptr<TensorQTable> tensor_table_; | |||
| std::unique_ptr<DataBuffer> cur_buffer_; | |||
| TensorRow cur_row_; | |||
| std::string err_message_; | |||
| std::string file_path_; | |||
| }; | |||
| @@ -41,19 +41,18 @@ Status GeneratorOp::Builder::SanityCheck() { | |||
| Status GeneratorOp::Builder::Build(std::shared_ptr<GeneratorOp> *ptr) { | |||
| RETURN_IF_NOT_OK(SanityCheck()); | |||
| *ptr = std::make_shared<GeneratorOp>(build_generator_function_, build_column_names_, build_column_types_, | |||
| build_prefetch_size_, build_buffer_size_, build_op_connector_size_, nullptr); | |||
| build_prefetch_size_, build_op_connector_size_, nullptr); | |||
| return (*ptr)->Init(); | |||
| } | |||
| GeneratorOp::GeneratorOp(py::function generator_function, std::vector<std::string> column_names, | |||
| std::vector<DataType> column_types, int32_t prefetch_size, int32_t buffer_size, | |||
| int32_t connector_size, std::shared_ptr<SamplerRT> sampler) | |||
| std::vector<DataType> column_types, int32_t prefetch_size, int32_t connector_size, | |||
| std::shared_ptr<SamplerRT> sampler) | |||
| : PipelineOp(connector_size, std::move(sampler)), | |||
| generator_function_(generator_function), | |||
| column_names_(column_names), | |||
| column_types_(column_types), | |||
| prefetch_size_(prefetch_size), | |||
| buffer_size_(buffer_size), | |||
| buffer_id_(0), | |||
| generator_counter_(0) {} | |||
| @@ -145,16 +144,6 @@ Status GeneratorOp::PyRowToTensorRow(py::object py_data, TensorRow *tensor_row) | |||
| return Status(StatusCode::kSuccess, ""); | |||
| } | |||
| Status GeneratorOp::FillBuffer(TensorQTable *tt) { | |||
| for (int i = 0; i < buffer_size_; i++) { | |||
| TensorRow row; | |||
| RETURN_IF_NOT_OK(PyRowToTensorRow(generator_.attr("__next__")(), &row)); | |||
| tt->push_back(std::move(row)); | |||
| generator_counter_++; | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| // Entry point for Generator, called by launch() | |||
| // Note that this function is very easy to break because of the Python GIL mechanism | |||
| // The master thread has the following workflow | |||
| @@ -192,23 +181,22 @@ Status GeneratorOp::operator()() { | |||
| // Handshake with TaskManager to synchronize thread creation | |||
| TaskManager::FindMe()->Post(); | |||
| RETURN_IF_NOT_OK(wp_.Register(tree_->AllTasks())); | |||
| std::unique_ptr<DataBuffer> fetched_buffer; | |||
| int64_t num_rows_sampled = sampler_ ? sampler_->CalculateNumSamples(num_rows_) : num_rows_; | |||
| RETURN_IF_NOT_OK(Init()); | |||
| bool eof = false; | |||
| while (!eof) { | |||
| // Create new buffer each iteration | |||
| fetched_buffer = std::make_unique<DataBuffer>(buffer_id_++, DataBuffer::kDeBFlagNone); | |||
| std::unique_ptr<TensorQTable> fetched_table = std::make_unique<TensorQTable>(); | |||
| // Create new row each iteration | |||
| bool eoe = false; | |||
| TensorRow new_row; | |||
| { | |||
| py::gil_scoped_acquire gil_acquire; | |||
| if (Py_IsInitialized() == 0) { | |||
| return Status(StatusCode::kMDPythonInterpreterFailure, "Python Interpreter is finalized"); | |||
| } | |||
| try { | |||
| RETURN_IF_NOT_OK(FillBuffer(fetched_table.get())); | |||
| RETURN_IF_NOT_OK(PyRowToTensorRow(generator_.attr("__next__")(), &new_row)); | |||
| generator_counter_++; | |||
| } catch (py::error_already_set &e) { | |||
| eoe = e.matches(PyExc_StopIteration); | |||
| // Restore exception to python | |||
| @@ -226,20 +214,18 @@ Status GeneratorOp::operator()() { | |||
| } | |||
| } | |||
| } | |||
| if (fetched_table->size() > 0) { | |||
| fetched_buffer->set_tensor_table(std::move(fetched_table)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(fetched_buffer))); | |||
| } | |||
| if (!new_row.empty()) RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row))); | |||
| if (eoe) { | |||
| // Push out EOE upon StopIteration exception from generator | |||
| MS_LOG(DEBUG) << "Generator operator sends out EOE."; | |||
| std::unique_ptr<DataBuffer> eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| if (IsLastIteration()) { | |||
| // If last repeat or not repeated, push out EOF and exit master loop | |||
| MS_LOG(DEBUG) << "Generator operator sends out EOF."; | |||
| std::unique_ptr<DataBuffer> eof_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eof_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| MS_LOG(DEBUG) << "Generator operator main execution loop complete."; | |||
| eof = true; | |||
| } else { | |||
| @@ -94,7 +94,7 @@ class GeneratorOp : public PipelineOp, public RandomAccessOp { | |||
| }; | |||
| GeneratorOp(py::function generator_function, std::vector<std::string> column_names, | |||
| std::vector<DataType> column_types, int32_t prefetch_size, int32_t buffer_size, int32_t connector_size, | |||
| std::vector<DataType> column_types, int32_t prefetch_size, int32_t connector_size, | |||
| std::shared_ptr<SamplerRT> sampler); | |||
| ~GeneratorOp() = default; | |||
| @@ -135,7 +135,6 @@ class GeneratorOp : public PipelineOp, public RandomAccessOp { | |||
| std::vector<std::string> column_names_; | |||
| std::vector<DataType> column_types_; | |||
| int32_t prefetch_size_; | |||
| int32_t buffer_size_; | |||
| int64_t generator_counter_; | |||
| py::object generator_; | |||
| @@ -14,11 +14,9 @@ | |||
| * limitations under the License. | |||
| */ | |||
| #include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h" | |||
| #include <fstream> | |||
| #include <unordered_set> | |||
| #include "utils/ms_utils.h" | |||
| #include "minddata/dataset/core/config_manager.h" | |||
| #include "minddata/dataset/core/tensor_shape.h" | |||
| #include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h" | |||
| #include "minddata/dataset/engine/db_connector.h" | |||
| #include "minddata/dataset/engine/execution_tree.h" | |||
| @@ -28,44 +26,34 @@ namespace dataset { | |||
| MappableLeafOp::MappableLeafOp(int32_t num_wkrs, int32_t queue_size, std::shared_ptr<SamplerRT> sampler, | |||
| int32_t rows_per_buffer) | |||
| : ParallelOp(num_wkrs, queue_size, std::move(sampler)), | |||
| row_cnt_(0), | |||
| buf_cnt_(0), | |||
| rows_per_buffer_(rows_per_buffer) {} | |||
| : ParallelOp(num_wkrs, queue_size, std::move(sampler)), rows_per_buffer_(rows_per_buffer) {} | |||
| // Main logic, Register Queue with TaskGroup, launch all threads and do the functor's work | |||
| Status MappableLeafOp::operator()() { | |||
| RETURN_IF_NOT_OK(LaunchThreadsAndInitOp()); | |||
| std::unique_ptr<DataBuffer> sampler_buffer; | |||
| RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer)); | |||
| while (true) { // each iterator is 1 epoch | |||
| std::vector<int64_t> keys; | |||
| keys.reserve(rows_per_buffer_); | |||
| int64_t row_cnt = 0; | |||
| while (true) { // each iteration is 1 epoch, breaks when IsLastIteration() is true | |||
| while (sampler_buffer->eoe() == false) { | |||
| TensorRow sample_row; | |||
| RETURN_IF_NOT_OK(sampler_buffer->PopRow(&sample_row)); | |||
| std::shared_ptr<Tensor> sample_ids = sample_row[0]; | |||
| for (auto itr = sample_ids->begin<int64_t>(); itr != sample_ids->end<int64_t>(); ++itr) { | |||
| if ((*itr) >= num_rows_) continue; // index out of bound, skipping | |||
| keys.push_back(*itr); | |||
| row_cnt_++; | |||
| if (row_cnt_ % rows_per_buffer_ == 0) { | |||
| RETURN_IF_NOT_OK( | |||
| io_block_queues_[buf_cnt_++ % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone))); | |||
| keys.clear(); | |||
| if ((*itr) >= num_rows_) { | |||
| MS_LOG(WARNING) << "Skipping sample with ID: " << *itr << " since it is out of bound: " << num_rows_; | |||
| continue; // index out of bound, skipping | |||
| } | |||
| RETURN_IF_NOT_OK( | |||
| io_block_queues_[row_cnt++ % num_workers_]->Add(std::make_unique<IOBlock>(*itr, IOBlock::kDeIoBlockNone))); | |||
| } | |||
| RETURN_IF_NOT_OK(sampler_->GetNextSample(&sampler_buffer)); | |||
| } | |||
| if (keys.empty() == false) { | |||
| RETURN_IF_NOT_OK( | |||
| io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(keys, IOBlock::kDeIoBlockNone))); | |||
| } | |||
| if (IsLastIteration()) { | |||
| std::unique_ptr<IOBlock> eoe_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe); | |||
| std::unique_ptr<IOBlock> eof_block = std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEof); | |||
| RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eoe_block))); | |||
| RETURN_IF_NOT_OK(io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::move(eof_block))); | |||
| RETURN_IF_NOT_OK(io_block_queues_[(row_cnt++) % num_workers_]->Add(std::move(eoe_block))); | |||
| RETURN_IF_NOT_OK(io_block_queues_[(row_cnt++) % num_workers_]->Add(std::move(eof_block))); | |||
| for (int32_t i = 0; i < num_workers_; ++i) { | |||
| RETURN_IF_NOT_OK( | |||
| io_block_queues_[i]->Add(std::make_unique<IOBlock>(std::vector<int64_t>(), IOBlock::kDeIoBlockNone))); | |||
| @@ -73,7 +61,7 @@ Status MappableLeafOp::operator()() { | |||
| return Status::OK(); | |||
| } else { // not the last repeat. | |||
| RETURN_IF_NOT_OK( | |||
| io_block_queues_[(buf_cnt_++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe))); | |||
| io_block_queues_[(row_cnt++) % num_workers_]->Add(std::make_unique<IOBlock>(IOBlock::kDeIoBlockFlagEoe))); | |||
| } | |||
| if (epoch_sync_flag_) { | |||
| @@ -104,49 +92,34 @@ Status MappableLeafOp::InitSampler() { | |||
| } | |||
| // contains the main logic of pulling a IOBlock from IOBlockQueue, load a buffer and push the buffer to out_connector_ | |||
| // IMPORTANT: 1 IOBlock produces 1 DataBuffer | |||
| // IMPORTANT: 1 IOBlock produces 1 row | |||
| Status MappableLeafOp::WorkerEntry(int32_t worker_id) { | |||
| TaskManager::FindMe()->Post(); | |||
| int64_t buffer_id = worker_id; | |||
| std::unique_ptr<IOBlock> io_block; | |||
| RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); | |||
| while (io_block != nullptr) { | |||
| if (io_block->wait() == true) { | |||
| if (io_block->wait()) { | |||
| // Sync io_block is a signal that master thread wants us to pause and sync with other workers. | |||
| // The last guy who comes to this sync point should reset the counter and wake up the master thread. | |||
| if (++num_workers_paused_ == num_workers_) { | |||
| wait_for_workers_post_.Set(); | |||
| } | |||
| } else if (io_block->eoe() == true) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE))); | |||
| buffer_id = worker_id; | |||
| } else if (io_block->eof() == true) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF))); | |||
| } else if (io_block->eoe()) { | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE(worker_id)); | |||
| } else if (io_block->eof()) { | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF(worker_id)); | |||
| } else { | |||
| std::vector<int64_t> keys; | |||
| RETURN_IF_NOT_OK(io_block->GetKeys(&keys)); | |||
| if (keys.empty() == true) return Status::OK(); // empty key is a quit signal for workers | |||
| std::unique_ptr<DataBuffer> db = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone); | |||
| RETURN_IF_NOT_OK(LoadBuffer(keys, &db)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(db))); | |||
| buffer_id += num_workers_; | |||
| if (keys.empty()) return Status::OK(); // empty key is a quit signal for workers | |||
| TensorRow trow; | |||
| RETURN_IF_NOT_OK(this->LoadTensorRow(keys[0], &trow)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(trow), worker_id)); | |||
| } | |||
| RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); | |||
| } | |||
| RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker"); | |||
| } | |||
| // Looping over LoadTensorRow to make 1 DataBuffer. 1 function call produces 1 buffer | |||
| Status MappableLeafOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) { | |||
| std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>(); | |||
| TensorRow trow; | |||
| for (const int64_t &key : keys) { | |||
| RETURN_IF_NOT_OK(this->LoadTensorRow(key, &trow)); | |||
| deq->push_back(std::move(trow)); | |||
| } | |||
| (*db)->set_tensor_table(std::move(deq)); | |||
| return Status::OK(); | |||
| } | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -52,53 +52,47 @@ using FolderImagesPair = std::shared_ptr<std::pair<std::string, std::queue<Image | |||
| class MappableLeafOp : public ParallelOp, public RandomAccessOp { | |||
| public: | |||
| // Constructor | |||
| // @param int32_t num_wkrs - Num of workers reading images in parallel | |||
| // @param int32_t - rows_per_buffer Number of images (rows) in each buffer | |||
| // @param std::string - dir directory of ImageNetFolder | |||
| // @param int32_t queue_size - connector queue size | |||
| // @param std::set<std::string> exts - set of file extensions to read, if empty, read everything under the dir | |||
| // @param td::unique_ptr<Sampler> sampler - sampler tells the source what to read | |||
| /// Constructor | |||
| /// \param int32_t num_wkrs - Num of workers reading images in parallel | |||
| /// \param int32_t queue_size - connector queue size | |||
| /// \param td::unique_ptr<Sampler> sampler - sampler tells the source what to read | |||
| MappableLeafOp(int32_t num_wkrs, int32_t queue_size, std::shared_ptr<SamplerRT> sampler, int32_t rows_per_buffer); | |||
| // Destructor. | |||
| /// Destructor. | |||
| ~MappableLeafOp() = default; | |||
| // Main Loop of MappableLeaf | |||
| // Master thread: Fill IOBlockQueue, then goes to sleep | |||
| // Worker thread: pulls IOBlock from IOBlockQueue, work on it then put buffer to mOutConnector | |||
| // @return Status The status code returned | |||
| /// Main Loop of MappableLeaf | |||
| /// Master thread: Fill IOBlockQueue, then goes to sleep | |||
| /// Worker thread: pulls IOBlock from IOBlockQueue, work on it then put row to out_connector_ | |||
| /// \return Status The status code returned | |||
| Status operator()() override; | |||
| // Op name getter | |||
| // @return Name of the current Op | |||
| /// Op name getter | |||
| /// @return Name of the current Op | |||
| std::string Name() const override { return "MappableLeafPp"; } | |||
| protected: | |||
| // Initialize Sampler, calls sampler->Init() within | |||
| // @return Status The status code returned | |||
| /// Initialize Sampler, calls sampler->Init() within | |||
| /// @return Status The status code returned | |||
| Status InitSampler(); | |||
| // // Called first when function is called | |||
| // // @return | |||
| /// Called first when function is called | |||
| /// \return Status The status code returned | |||
| virtual Status LaunchThreadsAndInitOp() = 0; | |||
| /// Worker thread pulls a number of IOBlock from IOBlock Queue, make a row and push it to Connector | |||
| /// \param int32_t workerId - id of each worker | |||
| /// \return Status The status code returned | |||
| Status WorkerEntry(int32_t workerId) override; | |||
| // @param const std::vector<int64_t> &keys - keys in ioblock | |||
| // @param std::unique_ptr<DataBuffer> db | |||
| // @return Status The status code returned | |||
| Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db); | |||
| // Load a tensor row according to a pair | |||
| // @param row_id_type row_id - id for this tensor row | |||
| // @param ImageLabelPair pair - <imagefile,label> | |||
| // @param TensorRow row - loaded row | |||
| // @return Status The status code returned | |||
| /// Virtual function to Load a tensor row at location row_id | |||
| /// \param row_id_type row_id - id for this tensor row | |||
| /// \param TensorRow row - loaded row | |||
| /// \return Status The status code returned | |||
| virtual Status LoadTensorRow(row_id_type row_id, TensorRow *row) = 0; | |||
| // reset Op | |||
| // @return Status The status code returned | |||
| /// Reset function to be called after every epoch to reset the source op after | |||
| /// \return Status The status code returned | |||
| Status Reset() override; | |||
| int32_t rows_per_buffer_; | |||
| @@ -70,10 +70,9 @@ Status MindRecordOp::Builder::Build(std::shared_ptr<MindRecordOp> *ptr) { | |||
| if (build_num_padded_ > 0) { | |||
| sample_json = ToJson(build_sample_); | |||
| } | |||
| new_mind_record_op = | |||
| std::make_shared<MindRecordOp>(build_num_mind_record_workers_, build_rows_per_buffer_, build_dataset_file_, | |||
| build_load_dataset_, build_op_connector_queue_size_, build_columns_to_load_, | |||
| build_operators_, build_num_padded_, sample_json, build_sample_bytes_); | |||
| new_mind_record_op = std::make_shared<MindRecordOp>( | |||
| build_num_mind_record_workers_, build_dataset_file_, build_load_dataset_, build_op_connector_queue_size_, | |||
| build_columns_to_load_, build_operators_, build_num_padded_, sample_json, build_sample_bytes_); | |||
| RETURN_IF_NOT_OK(new_mind_record_op->Init()); | |||
| *ptr = std::move(new_mind_record_op); | |||
| @@ -111,13 +110,11 @@ mindrecord::json MindRecordOp::Builder::ToJson(const py::handle &obj) { | |||
| } | |||
| // Constructor of the MindRecordOp. | |||
| MindRecordOp::MindRecordOp(int32_t num_mind_record_workers, int32_t rows_per_buffer, | |||
| std::vector<std::string> dataset_file, bool load_dataset, int32_t op_connector_queue_size, | |||
| const std::vector<std::string> &columns_to_load, | |||
| MindRecordOp::MindRecordOp(int32_t num_mind_record_workers, std::vector<std::string> dataset_file, bool load_dataset, | |||
| int32_t op_connector_queue_size, const std::vector<std::string> &columns_to_load, | |||
| const std::vector<std::shared_ptr<ShardOperator>> &operators, int64_t num_padded, | |||
| const mindrecord::json &sample_json, const std::map<std::string, std::string> &sample_bytes) | |||
| : MappableLeafOp(num_mind_record_workers, op_connector_queue_size, std::make_shared<SequentialSamplerRT>(0, 0), | |||
| rows_per_buffer), | |||
| : MappableLeafOp(num_mind_record_workers, op_connector_queue_size, std::make_shared<SequentialSamplerRT>(0, 0), 1), | |||
| dataset_file_(dataset_file), | |||
| load_dataset_(load_dataset), | |||
| columns_to_load_(columns_to_load), | |||
| @@ -211,8 +208,7 @@ void MindRecordOp::Print(std::ostream &out, bool show_all) const { | |||
| for (auto &file : dataset_file_) { | |||
| out << file << " "; | |||
| } | |||
| out << "\nNumber of rows : " << num_rows_ << "\nRows per buffer : " << rows_per_buffer_ | |||
| << "\nNumber of buffers : " << buffers_needed_ | |||
| out << "\nNumber of rows : " << num_rows_ << "\nNumber of buffers : " << buffers_needed_ | |||
| << "\nNumber of ShardReader workers : " << num_mind_record_workers_ << "\n\n"; | |||
| } | |||
| } | |||
| @@ -232,14 +228,12 @@ Status MindRecordOp::WorkerEntry(int32_t worker_id) { | |||
| continue; | |||
| } | |||
| if (io_block->eoe()) { | |||
| RETURN_IF_NOT_OK( | |||
| out_connector_->Add(worker_id, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE(worker_id)); | |||
| RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); | |||
| continue; | |||
| } | |||
| if (io_block->eof()) { | |||
| RETURN_IF_NOT_OK( | |||
| out_connector_->Add(worker_id, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF(worker_id)); | |||
| RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); | |||
| continue; | |||
| } | |||
| @@ -256,52 +250,41 @@ Status MindRecordOp::WorkerEntry(int32_t worker_id) { | |||
| return Status::OK(); // empty key is a quit signal for workers | |||
| } | |||
| const uint64_t buffer_id = keys[0]; | |||
| std::unique_ptr<DataBuffer> fetched_buffer; | |||
| const uint64_t row_id = keys[0]; | |||
| TensorRow fetched_row; | |||
| // Get the next buffer. Push it up to the output connector. | |||
| if (buffer_id % LOG_INTERVAL == 0) { | |||
| MS_LOG(DEBUG) << "MindRecord operator consumed buffer " << buffer_id << " by worker " << worker_id << "."; | |||
| if (row_id % LOG_INTERVAL == 0) { | |||
| MS_LOG(DEBUG) << "MindRecord operator consumed row " << row_id << " by worker " << worker_id << "."; | |||
| } | |||
| RETURN_IF_NOT_OK(GetBufferFromReader(&fetched_buffer, buffer_id, worker_id)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(fetched_buffer))); | |||
| RETURN_IF_NOT_OK(GetRowFromReader(&fetched_row, row_id, worker_id)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(fetched_row), worker_id)); | |||
| RETURN_IF_NOT_OK(io_block_queues_[worker_id]->PopFront(&io_block)); | |||
| } | |||
| RETURN_STATUS_UNEXPECTED("Unexpected nullptr received in worker."); | |||
| } | |||
| Status MindRecordOp::GetBufferFromReader(std::unique_ptr<DataBuffer> *fetched_buffer, int64_t buffer_id, | |||
| int32_t worker_id) { | |||
| *fetched_buffer = std::make_unique<DataBuffer>(buffer_id, DataBuffer::kDeBFlagNone); | |||
| std::unique_ptr<TensorQTable> tensor_table = std::make_unique<TensorQTable>(); | |||
| for (int32_t i = 0; i < rows_per_buffer_; ++i) { | |||
| int32_t row_id = buffer_id * rows_per_buffer_ + i; | |||
| auto rc = shard_reader_->GetNextById(row_id, worker_id); | |||
| auto task_type = rc.first; | |||
| auto tupled_buffer = rc.second; | |||
| if (task_type == mindrecord::TaskType::kPaddedTask) { | |||
| TensorRow tensor_row; | |||
| RETURN_IF_NOT_OK(LoadTensorRow(&tensor_row, {}, mindrecord::json(), task_type)); | |||
| std::vector<std::string> file_path(tensor_row.size(), dataset_file_[0]); | |||
| tensor_row.setPath(file_path); | |||
| tensor_table->push_back(std::move(tensor_row)); | |||
| } | |||
| if (tupled_buffer.empty()) break; | |||
| if (task_type == mindrecord::TaskType::kCommonTask) { | |||
| for (const auto &tupled_row : tupled_buffer) { | |||
| std::vector<uint8_t> columns_blob = std::get<0>(tupled_row); | |||
| mindrecord::json columns_json = std::get<1>(tupled_row); | |||
| TensorRow tensor_row; | |||
| RETURN_IF_NOT_OK(LoadTensorRow(&tensor_row, columns_blob, columns_json, task_type)); | |||
| std::vector<std::string> file_path(tensor_row.size(), dataset_file_[0]); | |||
| tensor_row.setPath(file_path); | |||
| tensor_table->push_back(std::move(tensor_row)); | |||
| } | |||
| Status MindRecordOp::GetRowFromReader(TensorRow *fetched_row, int64_t row_id, int32_t worker_id) { | |||
| *fetched_row = {}; | |||
| auto rc = shard_reader_->GetNextById(row_id, worker_id); | |||
| auto task_type = rc.first; | |||
| auto tupled_buffer = rc.second; | |||
| if (task_type == mindrecord::TaskType::kPaddedTask) { | |||
| RETURN_IF_NOT_OK(LoadTensorRow(fetched_row, {}, mindrecord::json(), task_type)); | |||
| std::vector<std::string> file_path(fetched_row->size(), dataset_file_[0]); | |||
| fetched_row->setPath(file_path); | |||
| } | |||
| if (tupled_buffer.empty()) return Status::OK(); | |||
| if (task_type == mindrecord::TaskType::kCommonTask) { | |||
| for (const auto &tupled_row : tupled_buffer) { | |||
| std::vector<uint8_t> columns_blob = std::get<0>(tupled_row); | |||
| mindrecord::json columns_json = std::get<1>(tupled_row); | |||
| RETURN_IF_NOT_OK(LoadTensorRow(fetched_row, columns_blob, columns_json, task_type)); | |||
| std::vector<std::string> file_path(fetched_row->size(), dataset_file_[0]); | |||
| fetched_row->setPath(file_path); | |||
| } | |||
| } | |||
| // Replace the TensorTable in DataBuffer with the new one. | |||
| (*fetched_buffer)->set_tensor_table(std::move(tensor_table)); | |||
| return Status::OK(); | |||
| } | |||
| @@ -134,13 +134,12 @@ class MindRecordOp : public MappableLeafOp { | |||
| // Constructor of the MindRecordOp. | |||
| // @note The builder class should be used to call it | |||
| // @param num_mind_record_workers - The number of workers for the op (run by ShardReader) | |||
| // @param rows_per_buffer - The requested number of rows per buffer | |||
| // @param dataset_file - dataset files | |||
| // @param op_connector_queue_size - The output connector queue size | |||
| // @param columns_to_load - The list of columns to use (column name) | |||
| // @param operators - ShardOperators for Shuffle, Category, Sample | |||
| MindRecordOp(int32_t num_mind_record_workers, int32_t rows_per_buffer, std::vector<std::string> dataset_file, | |||
| bool load_dataset, int32_t op_connector_queue_size, const std::vector<std::string> &columns_to_load, | |||
| MindRecordOp(int32_t num_mind_record_workers, std::vector<std::string> dataset_file, bool load_dataset, | |||
| int32_t op_connector_queue_size, const std::vector<std::string> &columns_to_load, | |||
| const std::vector<std::shared_ptr<ShardOperator>> &operators, int64_t num_padded_, | |||
| const mindrecord::json &sample_json, const std::map<std::string, std::string> &sample_bytes_); | |||
| @@ -195,7 +194,7 @@ class MindRecordOp : public MappableLeafOp { | |||
| std::string Name() const override { return "MindRecordOp"; } | |||
| private: | |||
| Status GetBufferFromReader(std::unique_ptr<DataBuffer> *fetched_buffer, int64_t buffer_id, int32_t worker_id); | |||
| Status GetRowFromReader(TensorRow *fetched_row, int64_t row_id, int32_t worker_id); | |||
| // Parses a single cell and puts the data into a tensor | |||
| // @param tensor_row - the tensor row to put the parsed data in | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019-2021 Huawei Technologies Co., Ltd | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -77,7 +77,6 @@ Status NonMappableLeafOp::operator()() { | |||
| NotifyToFillIOBlockQueue(); | |||
| while (!finished_reading_dataset_) { | |||
| int64_t buffer_id = 0; | |||
| int32_t workers_done = 0; | |||
| int64_t rows_read = 0; | |||
| { | |||
| @@ -86,22 +85,14 @@ Status NonMappableLeafOp::operator()() { | |||
| } | |||
| while (workers_done < num_workers_) { | |||
| std::unique_ptr<DataBuffer> fetched_buffer; | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Pop(0, &fetched_buffer)); | |||
| if (fetched_buffer->eoe()) { | |||
| TensorRow fetched_row; | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Pop(0, &fetched_row)); | |||
| if (fetched_row.eoe()) { | |||
| workers_done++; | |||
| } else if (total_rows_ == 0 || rows_read < total_rows_) { | |||
| // we need to push a buffer | |||
| if (total_rows_ > 0 && rows_read + fetched_buffer->NumRows() > total_rows_) { | |||
| // this is last buffer we need, and we only need a part of it | |||
| int64_t rowsToRemove = fetched_buffer->NumRows() - (total_rows_ - rows_read); | |||
| RETURN_IF_NOT_OK(fetched_buffer->SliceOff(rowsToRemove)); | |||
| } | |||
| rows_read += fetched_buffer->NumRows(); | |||
| fetched_buffer->set_id(buffer_id); | |||
| buffer_id++; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(fetched_buffer))); | |||
| // we need to push a row | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(fetched_row), 0)); | |||
| rows_read++; | |||
| } else { | |||
| // IOBlockQueue thread needs to: | |||
| // -stop pushing stuff to IOBlockQueue | |||
| @@ -126,23 +117,20 @@ Status NonMappableLeafOp::operator()() { | |||
| } | |||
| // all workers finished reading for this epoch, and we have read all the data from all workers | |||
| std::unique_ptr<DataBuffer> eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eoe_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| if (IsLastIteration()) { | |||
| finished_reading_dataset_ = true; | |||
| NotifyToFillIOBlockQueue(); | |||
| } else { | |||
| jagged_buffer_connector_->DoReset(); | |||
| buffer_id = 0; | |||
| // Self-reset to start a new iteration | |||
| RETURN_IF_NOT_OK(Reset()); | |||
| } | |||
| UpdateRepeatAndEpochCounter(); | |||
| } | |||
| std::unique_ptr<DataBuffer> eof_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eof_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| RETURN_IF_NOT_OK(PostEndOfData()); | |||
| @@ -168,8 +156,8 @@ Status NonMappableLeafOp::WorkerEntry(int32_t worker_id) { | |||
| MS_LOG(DEBUG) << Name() << " operator worker " << worker_id << " loaded file " << filename << "."; | |||
| } | |||
| } else { | |||
| std::unique_ptr<DataBuffer> eoe_buffer = std::make_unique<DataBuffer>(1, DataBuffer::kDeBFlagEOE); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(eoe_buffer))); | |||
| TensorRow eoe = TensorRow(TensorRow::kFlagEOE); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(eoe))); | |||
| } | |||
| RETURN_IF_NOT_OK(PopIoBlockQueue(worker_id, &io_block)); | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019-2021 Huawei Technologies Co., Ltd | |||
| * Copyright 2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -30,12 +30,6 @@ | |||
| #include "minddata/dataset/core/tensor.h" | |||
| #include "minddata/dataset/engine/datasetops/parallel_op.h" | |||
| namespace dataengine { | |||
| class Example; | |||
| class Feature; | |||
| class BytesList; | |||
| } // namespace dataengine | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| template <typename T> | |||
| @@ -46,8 +46,8 @@ RandomDataOp::Builder::Builder() | |||
| Status RandomDataOp::Builder::Build(std::shared_ptr<RandomDataOp> *out_op) { | |||
| RETURN_IF_NOT_OK(SanityCheck()); | |||
| *out_op = std::make_shared<RandomDataOp>(builder_num_workers_, builder_op_connector_size_, builder_rows_per_buffer_, | |||
| builder_total_rows_, std::move(builder_data_schema_)); | |||
| *out_op = std::make_shared<RandomDataOp>(builder_num_workers_, builder_op_connector_size_, builder_total_rows_, | |||
| std::move(builder_data_schema_)); | |||
| return Status::OK(); | |||
| } | |||
| @@ -61,13 +61,11 @@ Status RandomDataOp::Builder::SanityCheck() const { | |||
| } | |||
| // Constructor for RandomDataOp | |||
| RandomDataOp::RandomDataOp(int32_t num_workers, int32_t op_connector_size, int64_t rows_per_buffer, int64_t total_rows, | |||
| RandomDataOp::RandomDataOp(int32_t num_workers, int32_t op_connector_size, int64_t total_rows, | |||
| std::unique_ptr<DataSchema> data_schema) | |||
| : ParallelOp(num_workers, op_connector_size), | |||
| buffer_id_(0), | |||
| rows_per_buffer_(rows_per_buffer), | |||
| total_rows_(total_rows), | |||
| epoch_buffers_sent_(0), | |||
| epoch_rows_sent_(0), | |||
| guys_in_(0), | |||
| guys_out_(num_workers_), | |||
| eoe_worker_id_(0), | |||
| @@ -97,8 +95,7 @@ void RandomDataOp::Print(std::ostream &out, bool show_all) const { | |||
| // Call the super class for displaying any common detailed info | |||
| ParallelOp::Print(out, show_all); | |||
| // Then show any custom derived-internal stuff | |||
| out << "\nTotal_rows: " << total_rows_ << "\nRows per buffer: " << rows_per_buffer_ << "\nSchema:\n" | |||
| << *data_schema_ << "\n\n"; | |||
| out << "\nTotal_rows: " << total_rows_ << " \nSchema:\n" << *data_schema_ << "\n\n"; | |||
| } | |||
| } | |||
| @@ -147,18 +144,11 @@ Status RandomDataOp::operator()() { | |||
| "RandomDataOp expects total_rows < num_workers. total_row=" + | |||
| std::to_string(total_rows_) + ", num_workers=" + std::to_string(num_workers_) + " ."); | |||
| // First, compute how many buffers we'll need to satisfy the total row count. | |||
| // The only reason we do this is for the purpose of throttling worker count if needed. | |||
| int64_t buffers_needed = total_rows_ / rows_per_buffer_; | |||
| if (total_rows_ % rows_per_buffer_ != 0) { | |||
| buffers_needed++; | |||
| } | |||
| // If the amount of workers we have exceeds the number of buffers to produce, then we'll have | |||
| // If the amount of workers we have exceeds the number of rows to produce, then we'll have | |||
| // idle workers doing nothing. In that case, let's throttle the worker count. | |||
| if (num_workers_ > buffers_needed) { | |||
| MS_LOG(INFO) << "RandomDataOp throttling worker count from " << num_workers_ << "to " << buffers_needed; | |||
| num_workers_ = buffers_needed; | |||
| if (num_workers_ > total_rows_) { | |||
| MS_LOG(INFO) << "RandomDataOp throttling worker count from " << num_workers_ << "to " << total_rows_; | |||
| num_workers_ = total_rows_; | |||
| num_producers_ = num_workers_; | |||
| guys_out_ = num_workers_; | |||
| // The output connector was already created with a different worker count. We have to drop and recreate | |||
| @@ -181,18 +171,15 @@ Status RandomDataOp::operator()() { | |||
| currentWorker = (currentWorker + 1) % num_workers_; | |||
| } | |||
| // Next, compute the total buffer count. This stat is needed during reset logic | |||
| // Next, compute the total rows count. This stat is needed during reset logic | |||
| for (int32_t w = 0; w < num_workers_; w++) { | |||
| int64_t worker_buffers = 0; | |||
| worker_buffers = worker_max_rows_[w] / rows_per_buffer_; | |||
| if (worker_max_rows_[w] % rows_per_buffer_ != 0) worker_buffers++; | |||
| epoch_buffers_sent_ += worker_buffers; | |||
| epoch_rows_sent_ += worker_max_rows_[w]; | |||
| } | |||
| // For the connector to work, we need to target the correct worker channel for the eoe. | |||
| // This will initialize it for the first one. reset() handles for the rest of the epochs. | |||
| eoe_worker_id_ = epoch_buffers_sent_ % num_workers_; | |||
| epoch_buffers_sent_++; // Add the eoe buffer to the count for subsequent epochs | |||
| eoe_worker_id_ = epoch_rows_sent_ % num_workers_; | |||
| epoch_rows_sent_++; // Add the eoe row to the count for subsequent epochs | |||
| // RandomDataOp doesn't need the master thread to stay around. Kick off the workers and then master exits. | |||
| RETURN_IF_NOT_OK( | |||
| @@ -228,16 +215,14 @@ Status RandomDataOp::EpochSync(int32_t worker_id, bool *quitting) { | |||
| // Prepare for sync | |||
| all_out_.Clear(); | |||
| // Always flow eoe at the end | |||
| std::unique_ptr<DataBuffer> eoe_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(eoe_worker_id_, std::move(eoe_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE(eoe_worker_id_)); | |||
| // If we're done then also flow the eof | |||
| if (*quitting) { | |||
| // The eof needs to be sent from the next sender in the round robin, so +1 | |||
| int32_t eof_worker_id = (eoe_worker_id_ + 1) % num_workers_; | |||
| MS_LOG(INFO) << "RandomDataOp worker " << worker_id << " has no more epochs. sending eof as worker " | |||
| << eof_worker_id; | |||
| std::unique_ptr<DataBuffer> eof_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(eof_worker_id, std::move(eof_buffer))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF(eof_worker_id)); | |||
| } | |||
| } | |||
| @@ -290,21 +275,12 @@ Status RandomDataOp::WorkerEntry(int32_t worker_id) { | |||
| RETURN_IF_NOT_OK(CreateRandomRow(worker_id, &new_row)); | |||
| // Add the row to our table | |||
| new_tensor_table->push_back(std::move(new_row)); | |||
| worker_rows_packed_[worker_id]++; | |||
| // If the tensor table is at capacity then it's time to send it to output | |||
| if (new_tensor_table->size() == rows_per_buffer_) { | |||
| RETURN_IF_NOT_OK(PackAndSend(worker_id, std::move(new_tensor_table))); | |||
| } | |||
| } else { | |||
| // We've reached the total row count for this worker, so it's time for epoch sync. | |||
| // There is likely some records built but not sent yet, so take care of those first | |||
| // (this buffer will be smaller than rows_per_buffer) | |||
| if (new_tensor_table != nullptr && new_tensor_table->size() > 0) { | |||
| RETURN_IF_NOT_OK(PackAndSend(worker_id, std::move(new_tensor_table))); | |||
| } | |||
| // Send new_row out | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row), worker_id)); | |||
| } else { | |||
| // Now, let's enter the epoch sync | |||
| RETURN_IF_NOT_OK(EpochSync(worker_id, &quitting)); | |||
| } | |||
| @@ -315,14 +291,6 @@ Status RandomDataOp::WorkerEntry(int32_t worker_id) { | |||
| return Status::OK(); | |||
| } | |||
| // A helper function to stuff the tensor table into a buffer and send it to output connector | |||
| Status RandomDataOp::PackAndSend(int32_t worker_id, std::unique_ptr<TensorQTable> in_table) { | |||
| auto new_buffer = std::make_unique<DataBuffer>(GetNextBufferId(), DataBuffer::kDeBFlagNone); | |||
| new_buffer->set_tensor_table(std::move(in_table)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(worker_id, std::move(new_buffer))); | |||
| return Status::OK(); | |||
| } | |||
| // A helper function to create random data for the row | |||
| Status RandomDataOp::CreateRandomRow(int32_t worker_id, TensorRow *new_row) { | |||
| if (new_row == nullptr) { | |||
| @@ -385,7 +353,6 @@ Status RandomDataOp::Reset() { | |||
| worker_rows_packed_[w] = 0; | |||
| worker_max_rows_[w] = 0; | |||
| } | |||
| buffer_id_ = 0; | |||
| // Re-assign round robin row counts, starting from the worker after the one that gave | |||
| // the eoe last time | |||
| @@ -396,7 +363,7 @@ Status RandomDataOp::Reset() { | |||
| } | |||
| // Compute which worker should get the eoe for the next epoch | |||
| eoe_worker_id_ = ((epoch_buffers_sent_ % num_workers_) + eoe_worker_id_) % num_workers_; | |||
| eoe_worker_id_ = ((epoch_rows_sent_ % num_workers_) + eoe_worker_id_) % num_workers_; | |||
| // Wake up the workers to get them going again in a new epoch | |||
| guys_out_ = 0; | |||
| @@ -136,12 +136,11 @@ class RandomDataOp : public ParallelOp { | |||
| * @note Private constructor. Must use builder to construct. | |||
| * @param num_workers - The number of workers | |||
| * @param op_connector_size - The size of the output connector | |||
| * @param rows_per_buffer - The number of rows in each DataBuffer | |||
| * @param data_schema - A user-provided schema | |||
| * @param total_rows - The total number of rows in the dataset | |||
| * @return Builder - The modified builder by reference | |||
| */ | |||
| RandomDataOp(int32_t num_workers, int32_t op_connector_size, int64_t rows_per_buffer, int64_t total_rows, | |||
| RandomDataOp(int32_t num_workers, int32_t op_connector_size, int64_t total_rows, | |||
| std::unique_ptr<DataSchema> data_schema); | |||
| /** | |||
| @@ -213,14 +212,6 @@ class RandomDataOp : public ParallelOp { | |||
| */ | |||
| Status EpochSync(int32_t worker_id, bool *quitting); | |||
| /** | |||
| * A helper function to stuff the tensor table into a buffer and send it to output connector | |||
| * @param worker_id - The worker id | |||
| * @param in_table - The tensor table to pack and send | |||
| * @return Status The status code returned | |||
| */ | |||
| Status PackAndSend(int32_t worker_id, std::unique_ptr<TensorQTable> in_table); | |||
| /** | |||
| * A helper function to create random data for the row | |||
| * @param worker_id - The worker id | |||
| @@ -240,23 +231,12 @@ class RandomDataOp : public ParallelOp { | |||
| return uniDist(rand_gen_); | |||
| } | |||
| /** | |||
| * A quick inline for producing the next buffer id in sequence, threadsafe | |||
| * @return - The next buffer id. | |||
| */ | |||
| inline int32_t GetNextBufferId() { | |||
| std::unique_lock<std::mutex> lock(buffer_id_mutex_); | |||
| return ++buffer_id_; | |||
| } | |||
| // Private function for computing the assignment of the column name map. | |||
| // @return - Status | |||
| Status ComputeColMap() override; | |||
| int32_t buffer_id_; | |||
| int64_t rows_per_buffer_; | |||
| int64_t total_rows_; | |||
| int64_t epoch_buffers_sent_; | |||
| int64_t epoch_rows_sent_; | |||
| std::atomic<int32_t> guys_in_; | |||
| std::atomic<int32_t> guys_out_; | |||
| int32_t eoe_worker_id_; | |||
| @@ -266,7 +246,6 @@ class RandomDataOp : public ParallelOp { | |||
| std::mt19937 rand_gen_; | |||
| WaitPost epoch_sync_wait_post_; | |||
| WaitPost all_out_; | |||
| std::mutex buffer_id_mutex_; | |||
| }; // class RandomDataOp | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -117,10 +117,10 @@ Status TextFileOp::Init() { | |||
| return Status::OK(); | |||
| } | |||
| Status TextFileOp::LoadTensor(const std::string &line, std::unique_ptr<TensorQTable> *tensor_table, int64_t row) { | |||
| Status TextFileOp::LoadTensor(const std::string &line, TensorRow *out_row) { | |||
| std::shared_ptr<Tensor> tensor; | |||
| RETURN_IF_NOT_OK(Tensor::CreateScalar(line, &tensor)); | |||
| (**tensor_table)[row][0] = std::move(tensor); | |||
| (*out_row)[0] = std::move(tensor); | |||
| return Status::OK(); | |||
| } | |||
| @@ -130,11 +130,8 @@ Status TextFileOp::LoadFile(const std::string &file, int64_t start_offset, int64 | |||
| RETURN_STATUS_UNEXPECTED("Invalid file, failed to open file: " + file); | |||
| } | |||
| int64_t rows_each_buffer = 0; | |||
| int64_t rows_total = 0; | |||
| std::string line; | |||
| std::unique_ptr<DataBuffer> cur_buffer = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| std::unique_ptr<TensorQTable> tensor_table = std::make_unique<TensorQTable>(); | |||
| while (getline(handle, line)) { | |||
| if (line.empty()) { | |||
| @@ -152,23 +149,10 @@ Status TextFileOp::LoadFile(const std::string &file, int64_t start_offset, int64 | |||
| TensorRow tRow(1, nullptr); | |||
| tRow.setPath({file}); | |||
| tensor_table->push_back(std::move(tRow)); | |||
| RETURN_IF_NOT_OK(LoadTensor(line, &tensor_table, rows_each_buffer)); | |||
| rows_each_buffer++; | |||
| rows_total++; | |||
| if (rows_each_buffer == rows_per_buffer_) { | |||
| cur_buffer->set_tensor_table(std::move(tensor_table)); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(cur_buffer))); | |||
| RETURN_IF_NOT_OK(LoadTensor(line, &tRow)); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(tRow))); | |||
| cur_buffer = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| tensor_table = std::make_unique<TensorQTable>(); | |||
| rows_each_buffer = 0; | |||
| } | |||
| } | |||
| if (rows_each_buffer > 0) { | |||
| cur_buffer->set_tensor_table(std::move(tensor_table)); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(cur_buffer))); | |||
| rows_total++; | |||
| } | |||
| return Status::OK(); | |||
| @@ -173,7 +173,7 @@ class TextFileOp : public NonMappableLeafOp { | |||
| // @param tensor_table - the tensor table to put the parsed data in. | |||
| // @param row - the id of the row filled in the tensor table. | |||
| // @return Status - the error code returned. | |||
| Status LoadTensor(const std::string &line, std::unique_ptr<TensorQTable> *tensor_table, int64_t row); | |||
| Status LoadTensor(const std::string &line, TensorRow *out_row); | |||
| // Reads a text file and loads the data into multiple buffers. | |||
| // @param file - the file to read. | |||
| @@ -316,8 +316,6 @@ Status TFReaderOp::LoadFile(const std::string &filename, int64_t start_offset, i | |||
| int64_t rows_read = 0; | |||
| int64_t rows_total = 0; | |||
| std::unique_ptr<DataBuffer> current_buffer = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| std::unique_ptr<TensorQTable> new_tensor_table = std::make_unique<TensorQTable>(); | |||
| while (reader.peek() != EOF) { | |||
| if (!load_jagged_connector_) { | |||
| @@ -336,6 +334,10 @@ Status TFReaderOp::LoadFile(const std::string &filename, int64_t start_offset, i | |||
| std::string serialized_example; | |||
| serialized_example.resize(record_length); | |||
| (void)reader.read(&serialized_example[0], static_cast<std::streamsize>(record_length)); | |||
| int32_t num_columns = data_schema_->NumColumns(); | |||
| TensorRow newRow(num_columns, nullptr); | |||
| if (start_offset == kInvalidOffset || (rows_total >= start_offset && rows_total < end_offset)) { | |||
| dataengine::Example tf_file; | |||
| if (!tf_file.ParseFromString(serialized_example)) { | |||
| @@ -343,40 +345,24 @@ Status TFReaderOp::LoadFile(const std::string &filename, int64_t start_offset, i | |||
| MS_LOG(DEBUG) << errMsg + ", details of string: " << serialized_example; | |||
| RETURN_STATUS_UNEXPECTED(errMsg); | |||
| } | |||
| int32_t num_columns = data_schema_->NumColumns(); | |||
| TensorRow newRow(num_columns, nullptr); | |||
| std::vector<std::string> file_path(num_columns, filename); | |||
| newRow.setPath(file_path); | |||
| new_tensor_table->push_back(std::move(newRow)); | |||
| RETURN_IF_NOT_OK(LoadExample(&tf_file, &new_tensor_table, rows_read)); | |||
| RETURN_IF_NOT_OK(LoadExample(&tf_file, &newRow)); | |||
| rows_read++; | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(newRow))); | |||
| } | |||
| // ignore crc footer | |||
| (void)reader.ignore(static_cast<std::streamsize>(sizeof(int32_t))); | |||
| rows_total++; | |||
| if (rows_read == rows_per_buffer_) { | |||
| current_buffer->set_tensor_table(std::move(new_tensor_table)); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(current_buffer))); | |||
| current_buffer = std::make_unique<DataBuffer>(0, DataBuffer::BufferFlags::kDeBFlagNone); | |||
| new_tensor_table = std::make_unique<TensorQTable>(); | |||
| rows_read = 0; | |||
| } | |||
| } | |||
| if (rows_read > 0) { | |||
| current_buffer->set_tensor_table(std::move(new_tensor_table)); | |||
| RETURN_IF_NOT_OK(jagged_buffer_connector_->Add(worker_id, std::move(current_buffer))); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| // Parses a single row and puts the data into a tensor table. | |||
| Status TFReaderOp::LoadExample(const dataengine::Example *tf_file, std::unique_ptr<TensorQTable> *tensor_table, | |||
| int64_t row) { | |||
| Status TFReaderOp::LoadExample(const dataengine::Example *tf_file, TensorRow *out_row) { | |||
| int32_t num_columns = data_schema_->NumColumns(); | |||
| for (int32_t col = 0; col < num_columns; ++col) { | |||
| const ColDescriptor current_col = data_schema_->column(col); | |||
| @@ -387,16 +373,15 @@ Status TFReaderOp::LoadExample(const dataengine::Example *tf_file, std::unique_p | |||
| RETURN_STATUS_UNEXPECTED("Invalid parameter, column name: " + current_col.name() + " does not exist."); | |||
| } | |||
| const dataengine::Feature &column_values_list = iter_column->second; | |||
| RETURN_IF_NOT_OK(LoadFeature(tensor_table, column_values_list, current_col, row, col)); | |||
| RETURN_IF_NOT_OK(LoadFeature(out_row, column_values_list, current_col, col)); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| // Parses a single cell and puts the data into a tensor table. | |||
| Status TFReaderOp::LoadFeature(const std::unique_ptr<TensorQTable> *tensor_table, | |||
| const dataengine::Feature &column_values_list, const ColDescriptor ¤t_col, | |||
| int64_t row, int32_t col) { | |||
| Status TFReaderOp::LoadFeature(TensorRow *tensor_row, const dataengine::Feature &column_values_list, | |||
| const ColDescriptor ¤t_col, int32_t col) { | |||
| const dataengine::Feature::KindCase column_list_type = column_values_list.kind_case(); | |||
| std::unique_ptr<float[]> float_array; // For staging data from protobuf deserialization | |||
| const unsigned char *data_ptr = nullptr; // Generic pointer used for populating the Tensor | |||
| @@ -444,7 +429,7 @@ Status TFReaderOp::LoadFeature(const std::unique_ptr<TensorQTable> *tensor_table | |||
| } | |||
| } | |||
| (**tensor_table)[row][col] = std::move(ts); | |||
| (*tensor_row)[col] = std::move(ts); | |||
| return Status::OK(); | |||
| } | |||
| @@ -233,15 +233,15 @@ class TFReaderOp : public NonMappableLeafOp { | |||
| // @param tensor_table - the tensor table to put the parsed data in. | |||
| // @param row - the id of the row filled in the tensor table. | |||
| // @return Status - the error code returned. | |||
| Status LoadExample(const dataengine::Example *tf_file, std::unique_ptr<TensorQTable> *tensor_table, int64_t row); | |||
| Status LoadExample(const dataengine::Example *tf_file, TensorRow *out_row); | |||
| // Parses a single cell and puts the data into a tensor table. | |||
| // @param tensor_table - the tensor table to put the parsed data in. | |||
| // @param column_values_list - the cell to parse. | |||
| // @param current_col - the column descriptor containing the expected shape and type of the data. | |||
| // @return Status - the error code returned. | |||
| Status LoadFeature(const std::unique_ptr<TensorQTable> *tensor_table, const dataengine::Feature &column_values_list, | |||
| const ColDescriptor ¤t_col, int64_t row, int32_t col); | |||
| Status LoadFeature(TensorRow *tensor_row, const dataengine::Feature &column_values_list, | |||
| const ColDescriptor ¤t_col, int32_t col); | |||
| // Reads values from a bytes list | |||
| // @param current_col - the column descriptor containing the expected shape and type of the data. | |||
| @@ -20,6 +20,7 @@ | |||
| #include "utils/ms_utils.h" | |||
| #include "minddata/dataset/core/config_manager.h" | |||
| #include "minddata/dataset/engine/data_buffer.h" | |||
| #include "minddata/dataset/engine/dataset_iterator.h" | |||
| #include "minddata/dataset/engine/datasetops/take_op.h" | |||
| #include "minddata/dataset/engine/db_connector.h" | |||
| #include "minddata/dataset/engine/execution_tree.h" | |||
| @@ -69,60 +70,32 @@ void TakeOp::Print(std::ostream &out, bool show_all) const { | |||
| // Main entry point for Take | |||
| Status TakeOp::operator()() { | |||
| TaskManager::FindMe()->Post(); | |||
| std::unique_ptr<DataBuffer> buf; | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf)); | |||
| child_iterator_ = std::make_unique<ChildIterator>(this, 0, 0); | |||
| while (buf->eof() == false) { | |||
| if (take_count_ == max_takes_) { | |||
| // Do drain Operation | |||
| while (!buf->eoe() && !buf->eof()) { | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf)); | |||
| } | |||
| } | |||
| // Loop until non EOE is received | |||
| if (buf->eoe()) { | |||
| UpdateRepeatAndEpochCounter(); | |||
| take_count_ = 0; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(buf))); | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf)); | |||
| continue; | |||
| } | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| // Get buffer and push back when take_count is still small | |||
| if (take_count_ < max_takes_) { | |||
| std::unique_ptr<DataBuffer> p_buffer; | |||
| RETURN_IF_NOT_OK(FillBuffer(&buf, &p_buffer)); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(p_buffer))); | |||
| while (!new_row.eof()) { | |||
| while (!new_row.eoe()) { | |||
| if (take_count_ < max_takes_) { | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(new_row))); | |||
| take_count_++; | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| if (take_count_ == max_takes_) { | |||
| RETURN_IF_NOT_OK(child_iterator_->Drain()); | |||
| break; | |||
| } | |||
| } | |||
| RETURN_IF_NOT_OK(child_[0]->GetNextBuffer(&buf)); | |||
| UpdateRepeatAndEpochCounter(); | |||
| take_count_ = 0; | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| RETURN_IF_NOT_OK(child_iterator_->FetchNextTensorRow(&new_row)); | |||
| } | |||
| take_count_ = 0; | |||
| MS_LOG(DEBUG) << "Meet the end and push-back eof buffer."; | |||
| auto eof_buffer = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF); | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(eof_buffer))); | |||
| return Status::OK(); | |||
| } | |||
| // Function FillBuffer mainly prepare the buffer for returning | |||
| Status TakeOp::FillBuffer(std::unique_ptr<DataBuffer> *buffer, std::unique_ptr<DataBuffer> *data_buffer) { | |||
| int32_t buffer_size = (*buffer)->NumRows(); | |||
| if (take_count_ + buffer_size < max_takes_) { | |||
| *data_buffer = std::move(*buffer); | |||
| take_count_ = take_count_ + buffer_size; | |||
| } else { | |||
| MS_LOG(DEBUG) << "In last buffer: Push one buffer."; | |||
| std::unique_ptr<TensorQTable> new_tensor_table = std::make_unique<TensorQTable>(); | |||
| while (take_count_ < max_takes_) { | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK((*buffer)->PopRow(&new_row)); | |||
| take_count_++; | |||
| new_tensor_table->push_back(new_row); | |||
| } | |||
| (*buffer)->set_tensor_table(std::move(new_tensor_table)); | |||
| *data_buffer = std::move(*buffer); | |||
| } | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| @@ -86,7 +86,7 @@ class TakeOp : public PipelineOp { | |||
| int32_t max_takes_; // The number of takes that the user requested | |||
| int32_t take_count_; // A counter for the current number of executed takes | |||
| Status FillBuffer(std::unique_ptr<DataBuffer> *buffer, std::unique_ptr<DataBuffer> *data_buffer); | |||
| std::unique_ptr<ChildIterator> child_iterator_; // An iterator for fetching. | |||
| }; | |||
| } // namespace dataset | |||
| } // namespace mindspore | |||
| @@ -72,96 +72,43 @@ Status ZipOp::operator()() { | |||
| // Loop until eof is true | |||
| while (!eof_) { | |||
| // Create tensor table and prepare it by fetching and packing the first zipped row into it. | |||
| std::unique_ptr<TensorQTable> curr_table = std::make_unique<TensorQTable>(); | |||
| RETURN_IF_NOT_OK(prepare(curr_table.get())); | |||
| // 1 Prepare new epoch | |||
| RETURN_IF_NOT_OK(prepare()); | |||
| // 2 fetch first row | |||
| TensorRow row; | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&row)); | |||
| // If an eof got picked up during the above prepare, then we're done | |||
| // If an eof got picked up, then we're done | |||
| if (eof_) { | |||
| break; | |||
| } | |||
| while (!draining_) { | |||
| // 1. If a previous loop iteration sent the current table out, then create a new one. | |||
| if (curr_table == nullptr) { | |||
| curr_table = std::make_unique<TensorQTable>(); | |||
| } | |||
| // 2 fill the table. Note: draining mode might get turned on if any of the child inputs were done | |||
| RETURN_IF_NOT_OK(fillBuffer(curr_table.get())); | |||
| // 3 create and update buffer and send it to the out connector | |||
| if (!curr_table->empty()) { | |||
| std::unique_ptr<DataBuffer> curr_buffer = std::make_unique<DataBuffer>(buffer_id_, DataBuffer::kDeBFlagNone); | |||
| curr_buffer->set_tensor_table(std::move(curr_table)); | |||
| MS_LOG(DEBUG) << "Zip operator finished one buffer, pushing, rows " << curr_buffer->NumRows() << ", cols " | |||
| << curr_buffer->NumCols() << ", map " << column_name_id_map_.size() << "."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(curr_buffer))); | |||
| buffer_id_++; | |||
| } | |||
| // 3 send new row to the out connector | |||
| MS_LOG(DEBUG) << "Zip operator finished one row, pushing, cols " << row.size() << ", map " | |||
| << column_name_id_map_.size() << "."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(std::move(row))); | |||
| // 4 fetch one more row | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&row)); | |||
| } | |||
| // 4 handle drain state. | |||
| // 5 handle drain state. | |||
| if (draining_) { | |||
| MS_LOG(DEBUG) << "Zip operator is now draining child inputs."; | |||
| RETURN_IF_NOT_OK(drainPipeline()); | |||
| // Now that we have drained child inputs, send the eoe up. | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOE)))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOE()); | |||
| } | |||
| } | |||
| // 5 handle eof | |||
| // propagate eof here. | |||
| // 6 handle eof | |||
| MS_LOG(DEBUG) << "Zip operator got EOF, propagating."; | |||
| RETURN_IF_NOT_OK(out_connector_->Add(0, std::move(std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF)))); | |||
| RETURN_IF_NOT_OK(out_connector_->SendEOF()); | |||
| return Status::OK(); | |||
| } | |||
| // Handles preprocessing of the main loop, used when starting new epoch | |||
| Status ZipOp::prepare(TensorQTable *const table) { | |||
| Status ZipOp::prepare() { | |||
| MS_LOG(DEBUG) << "Zip operator prepares for new epoch."; | |||
| draining_ = false; | |||
| buffer_id_ = 0; | |||
| if (table == nullptr) { | |||
| return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, | |||
| "Invalid data, ZipOp prepare phase requires a tensor table, but got nullptr."); | |||
| } | |||
| // fill initial row | |||
| TensorRow new_row; | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&new_row)); | |||
| // If the first row fetching resulted in eof, then we are done. | |||
| if (eof_) { | |||
| return Status::OK(); | |||
| } | |||
| // One of our child iterators encounter EOE. Returns and proceed with draining phase. | |||
| if (new_row.empty()) { | |||
| return Status::OK(); | |||
| } | |||
| // Pack this first row into our tensor table | |||
| table->push_back(std::move(new_row)); | |||
| return Status::OK(); | |||
| } | |||
| // fillBuffer always expects a new table to fill | |||
| Status ZipOp::fillBuffer(TensorQTable *const table) { | |||
| if (table == nullptr) { | |||
| return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, | |||
| "Invalid data, ZipOp fillBuffer null table pointer."); | |||
| } | |||
| TensorRow new_row; | |||
| while (table->size() < static_cast<size_t>(rows_per_buffer_)) { | |||
| RETURN_IF_NOT_OK(getNextTensorRow(&new_row)); | |||
| // Early exit the loop if we got empty row from any of our child iterations | |||
| if (new_row.empty()) { | |||
| return Status::OK(); | |||
| } | |||
| // else we got a row so pack it into the tensor table. | |||
| // Currently we don't support printing error info after zip | |||
| new_row.setPath({}); | |||
| table->push_back(std::move(new_row)); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| @@ -110,11 +110,7 @@ class ZipOp : public PipelineOp { | |||
| private: | |||
| // Handles preprocessing of the main loop, used when starting new epoch | |||
| Status prepare(TensorQTable *const table); | |||
| // This function calls takes a table repeatedly adds rows to it. | |||
| // @param table a table of tensors to be moved into a buffer | |||
| Status fillBuffer(TensorQTable *const table); | |||
| Status prepare(); | |||
| // Special handle case where an empty row has been received from child iterator | |||
| // @note - we need to drain eoe signals from all children connectors. | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * Copyright 2019-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -26,7 +26,7 @@ namespace mindspore { | |||
| namespace dataset { | |||
| // DbConnector is a derived class from Connector with added logic to handle EOE and EOF. | |||
| // The Connector class itself is responsible to ensure deterministic order on every run. | |||
| class DbConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| class DbConnector : public Connector<TensorRow> { | |||
| public: | |||
| // Constructor of DbConnector | |||
| // @note DbConnector will create internal N number of blocking queues, where N = nProducers. | |||
| @@ -35,7 +35,7 @@ class DbConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| // @param n_consumers The number of thread consuming data from this DbConnector. | |||
| // @param queue_capacity The number of element (DataBuffer) for each internal queue. | |||
| DbConnector(int32_t n_producers, int32_t n_consumers, int32_t queue_capacity) | |||
| : Connector<std::unique_ptr<DataBuffer>>(n_producers, n_consumers, queue_capacity), end_of_file_(false) {} | |||
| : Connector<TensorRow>(n_producers, n_consumers, queue_capacity), end_of_file_(false) {} | |||
| // Destructor of DbConnector | |||
| ~DbConnector() = default; | |||
| @@ -44,10 +44,19 @@ class DbConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| // @note The caller of this add method should use std::move to pass the ownership to DbConnector. | |||
| // @param worker_id The id of a worker thread calling this method. | |||
| // @param el A rvalue reference to an element to be passed/added/pushed. | |||
| Status Add(int32_t worker_id, std::unique_ptr<DataBuffer> &&el) noexcept { | |||
| return (Connector<std::unique_ptr<DataBuffer>>::Push(worker_id, std::move(el))); | |||
| Status Add(TensorRow &&el, int32_t worker_id = 0) noexcept { | |||
| return (Connector<TensorRow>::Push(worker_id, std::move(el))); | |||
| } | |||
| Status SendEOE(int32_t worker_id = 0) noexcept { | |||
| TensorRow eoe = TensorRow(TensorRow::kFlagEOE); | |||
| return Add(std::move(eoe), worker_id); | |||
| } | |||
| Status SendEOF(int32_t worker_id = 0) noexcept { | |||
| TensorRow eof = TensorRow(TensorRow::kFlagEOF); | |||
| return Add(std::move(eof), worker_id); | |||
| } | |||
| // Get a unique_ptr<DataBuffer> from the DbConnector. | |||
| // @note After the first EOF Buffer is encountered, subsequent pop()s will return EOF Buffer. | |||
| // This will provide/propagate the EOF to all consumer threads of this Connector. | |||
| @@ -56,7 +65,7 @@ class DbConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| // @param worker_id The id of a worker thread calling this method. | |||
| // @param result The address of a unique_ptr<DataBuffer> where the popped element will be placed. | |||
| // @param retry_if_eoe A flag to allow the same thread invoke pop() again if the current pop returns eoe buffer. | |||
| Status PopWithRetry(int32_t worker_id, std::unique_ptr<DataBuffer> *result, bool retry_if_eoe = false) noexcept { | |||
| Status PopWithRetry(int32_t worker_id, TensorRow *result, bool retry_if_eoe = false) noexcept { | |||
| if (result == nullptr) { | |||
| return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, | |||
| "[ERROR] nullptr detected when getting data from db connector"); | |||
| @@ -65,21 +74,17 @@ class DbConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| RETURN_IF_NOT_OK(cv_.Wait(&lk, [this, worker_id]() { return (expect_consumer_ == worker_id) || end_of_file_; })); | |||
| // Once an EOF message is encountered this flag will be set and we can return early. | |||
| if (end_of_file_) { | |||
| *result = std::make_unique<DataBuffer>(0, DataBuffer::kDeBFlagEOF); | |||
| *result = TensorRow(TensorRow::kFlagEOF); | |||
| } else { | |||
| RETURN_IF_NOT_OK(queues_[pop_from_]->PopFront(result)); | |||
| if (*result == nullptr) { | |||
| return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, | |||
| "[ERROR] nullptr detected when getting data from db connector"); | |||
| } | |||
| // Setting the internal flag once the first EOF is encountered. | |||
| if ((*result)->eof()) { | |||
| if (result->eof()) { | |||
| end_of_file_ = true; | |||
| } | |||
| pop_from_ = (pop_from_ + 1) % num_producers_; | |||
| } | |||
| // Do not increment expect_consumer_ when result is eoe and retry_if_eoe is set. | |||
| if (!((*result)->eoe() && retry_if_eoe)) { | |||
| if (!(result->eoe() && retry_if_eoe)) { | |||
| expect_consumer_ = (expect_consumer_ + 1) % num_consumers_; | |||
| } | |||
| } | |||
| @@ -84,7 +84,7 @@ Status GeneratorNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ | |||
| // GeneratorOp's constructor takes in a prefetch_size, which isn't being set by user nor is it being used by | |||
| // GeneratorOp internally. Here it is given a zero which is the default in generator builder | |||
| std::shared_ptr<GeneratorOp> op = std::make_shared<GeneratorOp>(generator_function_, column_names_, column_types_, 0, | |||
| rows_per_buffer_, connector_que_size_, sampler_rt); | |||
| connector_que_size_, sampler_rt); | |||
| // set the number of rows from source length | |||
| op->SetNumRows(source_len_); | |||
| @@ -159,13 +159,13 @@ Status MindDataNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_o | |||
| // else if pass a vector to MindData(), it will be treated as specified files to be read | |||
| if (search_for_pattern_) { | |||
| std::vector<std::string> dataset_file_vec_ = {dataset_file_}; | |||
| mindrecord_op = std::make_shared<MindRecordOp>(num_workers_, rows_per_buffer_, dataset_file_vec_, | |||
| search_for_pattern_, connector_que_size_, columns_list_, operators_, | |||
| num_padded_, padded_sample_, sample_bytes_); | |||
| mindrecord_op = | |||
| std::make_shared<MindRecordOp>(num_workers_, dataset_file_vec_, search_for_pattern_, connector_que_size_, | |||
| columns_list_, operators_, num_padded_, padded_sample_, sample_bytes_); | |||
| } else { | |||
| mindrecord_op = std::make_shared<MindRecordOp>(num_workers_, rows_per_buffer_, dataset_files_, search_for_pattern_, | |||
| connector_que_size_, columns_list_, operators_, num_padded_, | |||
| padded_sample_, sample_bytes_); | |||
| mindrecord_op = | |||
| std::make_shared<MindRecordOp>(num_workers_, dataset_files_, search_for_pattern_, connector_que_size_, | |||
| columns_list_, operators_, num_padded_, padded_sample_, sample_bytes_); | |||
| } | |||
| RETURN_IF_NOT_OK(mindrecord_op->Init()); | |||
| @@ -107,8 +107,7 @@ Status RandomNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops | |||
| } | |||
| std::shared_ptr<RandomDataOp> op; | |||
| op = std::make_shared<RandomDataOp>(num_workers_, connector_que_size_, rows_per_buffer_, total_rows_, | |||
| std::move(data_schema_)); | |||
| op = std::make_shared<RandomDataOp>(num_workers_, connector_que_size_, total_rows_, std::move(data_schema_)); | |||
| op->set_total_repeats(GetTotalRepeats()); | |||
| op->set_num_repeats_per_epoch(GetNumRepeatsPerEpoch()); | |||
| node_ops->push_back(op); | |||
| @@ -1,5 +1,5 @@ | |||
| /** | |||
| * Copyright 2019 Huawei Technologies Co., Ltd | |||
| * Copyright 2019-2021 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| @@ -27,10 +27,10 @@ | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| class JaggedConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| class JaggedConnector : public Connector<TensorRow> { | |||
| public: | |||
| JaggedConnector(int32_t num_producers, int32_t num_consumers, int32_t queue_capacity) | |||
| : Connector<std::unique_ptr<DataBuffer>>(num_producers, num_consumers, queue_capacity) { | |||
| : Connector<TensorRow>(num_producers, num_consumers, queue_capacity) { | |||
| for (int i = 0; i < num_producers; i++) { | |||
| is_queue_finished_.push_back(false); | |||
| } | |||
| @@ -38,11 +38,11 @@ class JaggedConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| ~JaggedConnector() = default; | |||
| Status Add(int32_t worker_d, std::unique_ptr<DataBuffer> &&element) noexcept { | |||
| return Connector<std::unique_ptr<DataBuffer>>::Push(worker_d, std::move(element)); | |||
| Status Add(int32_t worker_d, TensorRow &&element) noexcept { | |||
| return Connector<TensorRow>::Push(worker_d, std::move(element)); | |||
| } | |||
| Status Pop(int32_t worker_id, std::unique_ptr<DataBuffer> *result) noexcept override { | |||
| Status Pop(int32_t worker_id, TensorRow *result) noexcept override { | |||
| { | |||
| MS_ASSERT(worker_id < num_consumers_); | |||
| std::unique_lock<std::mutex> lock(m_); | |||
| @@ -53,7 +53,7 @@ class JaggedConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| } | |||
| RETURN_IF_NOT_OK(queues_[pop_from_]->PopFront(result)); | |||
| if ((*result)->eoe()) { | |||
| if (result->eoe()) { | |||
| is_queue_finished_[pop_from_] = true; | |||
| } | |||
| @@ -77,7 +77,7 @@ class JaggedConnector : public Connector<std::unique_ptr<DataBuffer>> { | |||
| is_queue_finished_[i] = false; | |||
| } | |||
| Connector<std::unique_ptr<DataBuffer>>::Reset(); | |||
| Connector<TensorRow>::Reset(); | |||
| } | |||
| private: | |||
| @@ -38,7 +38,7 @@ | |||
| namespace mindspore { | |||
| namespace dataset { | |||
| TreeAdapter::TreeAdapter(UsageFlag usage) : usage_(usage), tree_state_(kCompileStateInit) { | |||
| TreeAdapter::TreeAdapter(UsageFlag usage) : usage_(usage), tree_state_(kCompileStateInit), launched_(false) { | |||
| optimize_ = common::GetEnv("OPTIMIZE") == "true"; | |||
| // Initialize profiling parameters | |||
| @@ -215,44 +215,24 @@ Status TreeAdapter::GetNext(TensorRow *row) { | |||
| bool isProfilingEnable = tree_->GetProfilingManager()->IsProfilingEnable(); | |||
| // When cur_db_ is a nullptr, it means this is the first call to get_next, launch ExecutionTree | |||
| if (cur_db_ == nullptr) { | |||
| RETURN_IF_NOT_OK(tree_->Launch()); | |||
| // Profiling | |||
| std::shared_ptr<Tracing> node; | |||
| Status s = tree_->GetProfilingManager()->GetTracingNode(kDatasetIteratorTracingName, &node); | |||
| if (s.IsOk()) { | |||
| tracing_ = std::dynamic_pointer_cast<DatasetIteratorTracing>(node); | |||
| cur_connector_size_ = tree_->root()->ConnectorSize(); | |||
| cur_connector_capacity_ = tree_->root()->ConnectorCapacity(); | |||
| } | |||
| RETURN_IF_NOT_OK(tree_->root()->GetNextBuffer(&cur_db_)); // first buf can't be eof or empty buf with none flag | |||
| if (cur_db_->eoe()) { // return empty tensor if 1st buf is a ctrl buf (no rows) | |||
| MS_LOG(INFO) << "End of data iteration."; | |||
| if (isProfilingEnable) { | |||
| tree_->SetEpochEnd(); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| if (!launched_) { | |||
| RETURN_IF_NOT_OK(Launch()); | |||
| } | |||
| CHECK_FAIL_RETURN_UNEXPECTED(!cur_db_->eof(), "EOF has already been reached."); | |||
| if (cur_db_->NumRows() == 0) { // a new row is fetched if cur buf is empty or a ctrl buf | |||
| RETURN_IF_NOT_OK(tree_->root()->GetNextBuffer(&cur_db_)); | |||
| if (cur_db_->eoe()) { // return empty if this new buffer is a ctrl flag | |||
| MS_LOG(INFO) << "End of data iteration."; | |||
| if (isProfilingEnable) { | |||
| tree_->SetEpochEnd(); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| if (cur_db_->eof()) { | |||
| tree_->SetFinished(); | |||
| std::string err = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs."; | |||
| RETURN_STATUS_UNEXPECTED(err); | |||
| RETURN_IF_NOT_OK(tree_->root()->GetNextRow(row)); // first buf can't be eof or empty buf with none flag | |||
| if (row->eoe()) { // return empty tensor if 1st buf is a ctrl buf (no rows) | |||
| MS_LOG(INFO) << "End of data iteration."; | |||
| if (isProfilingEnable) { | |||
| tree_->SetEpochEnd(); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| RETURN_IF_NOT_OK(cur_db_->PopRow(row)); | |||
| if (row->eof()) { | |||
| tree_->SetFinished(); | |||
| std::string err = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs."; | |||
| RETURN_STATUS_UNEXPECTED(err); | |||
| } | |||
| // Record profiling info | |||
| if (tracing_ != nullptr) { | |||
| uint64_t end_time = ProfilingTime::GetCurMilliSecond(); | |||
| @@ -263,9 +243,19 @@ Status TreeAdapter::GetNext(TensorRow *row) { | |||
| return Status::OK(); | |||
| } | |||
| Status TreeAdapter::Launch() const { | |||
| Status TreeAdapter::Launch() { | |||
| CHECK_FAIL_RETURN_UNEXPECTED(tree_ != nullptr, "Tree is a nullptr."); | |||
| return tree_->Launch(); | |||
| RETURN_IF_NOT_OK(tree_->Launch()); | |||
| launched_ = true; | |||
| // Profiling | |||
| std::shared_ptr<Tracing> node; | |||
| Status s = tree_->GetProfilingManager()->GetTracingNode(kDatasetIteratorTracingName, &node); | |||
| if (s.IsOk()) { | |||
| tracing_ = std::dynamic_pointer_cast<DatasetIteratorTracing>(node); | |||
| cur_connector_size_ = tree_->root()->ConnectorSize(); | |||
| cur_connector_capacity_ = tree_->root()->ConnectorCapacity(); | |||
| } | |||
| return Status::OK(); | |||
| } | |||
| } // namespace dataset | |||
| @@ -64,7 +64,7 @@ class TreeAdapter { | |||
| // to be able to launch a thread. BuildAndPrepare needs to be called before this function | |||
| TaskGroup *const AllTasks() const { return tree_ ? tree_->AllTasks() : nullptr; } | |||
| Status Launch() const; | |||
| Status Launch(); | |||
| // Set optional optimization pass | |||
| void SetOptimize(bool value) { optimize_ = value; } | |||
| @@ -88,7 +88,6 @@ class TreeAdapter { | |||
| // This RECURSIVE function walks the (optimized) IR tree in DFS to build its corresponding Execution tree. | |||
| Status BuildExecutionTreeRecur(std::shared_ptr<DatasetNode> ir, std::shared_ptr<DatasetOp> *op); | |||
| std::unique_ptr<DataBuffer> cur_db_; | |||
| std::unordered_map<std::string, int32_t> column_name_map_; | |||
| std::shared_ptr<DatasetNode> root_ir_; | |||
| std::unique_ptr<ExecutionTree> tree_; // current connector capacity of root op, used for profiling | |||
| @@ -98,6 +97,7 @@ class TreeAdapter { | |||
| int32_t cur_connector_size_; // current connector size of root op, used for profiling | |||
| int32_t cur_connector_capacity_; // current connector capacity of root op, used for profiling | |||
| UsageFlag usage_; // usage of this tree adapter (type of consumer) | |||
| bool launched_; | |||
| // State flags for the lifecycle of the tree | |||
| enum CompileState { | |||
| kCompileStateInit = 0, // The freshly initialized state | |||
| @@ -56,7 +56,7 @@ Status TreeAdapterLite::BuildTree(std::shared_ptr<DatasetNode> root_ir) { | |||
| Status TreeAdapterLite::GetNextRow(TensorRow *row) { | |||
| RETURN_UNEXPECTED_IF_NULL(root_); | |||
| RETURN_IF_NOT_OK(root_->GetNextRow(row)); | |||
| RETURN_IF_NOT_OK(root_->GetNextRowPullMode(row)); | |||
| return Status::OK(); | |||
| } | |||
| @@ -31,7 +31,6 @@ namespace dataset { | |||
| // Forward declare | |||
| class ExecutionTree; | |||
| class DatasetIterator; | |||
| class DatasetOp; | |||
| class Tensor; | |||
| @@ -277,7 +277,7 @@ TEST_F(MindDataTestCacheOp, DISABLED_TestRandomDataCache1) { | |||
| rc = CacheOp::Builder() | |||
| .SetNumWorkers(5) | |||
| .SetClient(myClient) | |||
| .SetRowsPerBuffer(4) | |||
| .SetRowsPerBuffer(1) | |||
| .SetSampler(std::move(seq_sampler)) | |||
| .Build(&myCacheOp); | |||
| ASSERT_TRUE(rc.IsOk()); | |||
| @@ -1,4 +1,4 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # Copyright 2020-2021 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| @@ -111,7 +111,7 @@ def test_decode_op(): | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter2.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -227,7 +227,7 @@ def test_generator_dict_4(): | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -251,7 +251,7 @@ def test_generator_dict_4_1(): | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -277,7 +277,7 @@ def test_generator_dict_4_2(): | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -309,7 +309,7 @@ def test_generator_dict_5(): | |||
| # now iter1 has been exhausted, c++ pipeline has been shut down. | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -418,7 +418,7 @@ def test_generator_tuple_4(): | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -450,7 +450,7 @@ def test_generator_tuple_5(): | |||
| # now iter1 has been exhausted, c++ pipeline has been shut down. | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -484,7 +484,7 @@ def test_generator_tuple_repeat_1(): | |||
| # now iter1 has been exhausted, c++ pipeline has been shut down. | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||
| @@ -519,7 +519,7 @@ def test_generator_tuple_repeat_repeat_1(): | |||
| # now iter1 has been exhausted, c++ pipeline has been shut down. | |||
| with pytest.raises(RuntimeError) as info: | |||
| iter1.__next__() | |||
| err_msg = "EOF buffer encountered. Users try to fetch data beyond the specified number of epochs." | |||
| err_msg = "EOF buffer encountered. User tries to fetch data beyond the specified number of epochs." | |||
| assert err_msg in str(info.value) | |||