Merge pull request !516 from chenweifeng/tanhtags/v0.3.0-alpha
| @@ -0,0 +1,46 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "kernel/gpu/cuda_impl/tanh_impl.cuh" | |||||
| #include <cuda_runtime.h> | |||||
| template<typename T> | |||||
| __global__ void TanhKernel(const size_t size, const T* x_addr, T* y_addr) { | |||||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) { | |||||
| y_addr[pos] = tanh(x_addr[pos]); | |||||
| } | |||||
| } | |||||
| template<typename T> | |||||
| __global__ void TanhGradKernel(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr) { | |||||
| for (int pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) { | |||||
| dx_addr[pos] = dy_addr[pos] * (1 - y_addr[pos] * y_addr[pos]); | |||||
| } | |||||
| } | |||||
| template<typename T> | |||||
| void Tanh(const size_t size, const T* x_addr, T* y_addr, cudaStream_t cuda_stream) { | |||||
| TanhKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, x_addr, y_addr); | |||||
| } | |||||
| template<typename T> | |||||
| void TanhGrad(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr, cudaStream_t cuda_stream) { | |||||
| TanhGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, y_addr, dy_addr, dx_addr); | |||||
| } | |||||
| template void Tanh(const size_t size, const float* x_addr, float* y_addr, cudaStream_t cuda_stream); | |||||
| template void TanhGrad(const size_t size, const float* y_addr, const float* dy_addr, | |||||
| float* dx_addr, cudaStream_t cuda_stream); | |||||
| @@ -0,0 +1,28 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_ | |||||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_ | |||||
| #include "device/gpu/cuda_common.h" | |||||
| template<typename T> | |||||
| void Tanh(const size_t size, const T* x_addr, T* y_addr, cudaStream_t cuda_stream); | |||||
| template<typename T> | |||||
| void TanhGrad(const size_t size, const T* y_addr, const T* dy_addr, T* dx_addr, cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_TAN_H_ | |||||
| @@ -0,0 +1,24 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "kernel/gpu/nn/tanh_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||||
| TanhGpuKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,75 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GPU_KERNEL_H_ | |||||
| #include <cuda_runtime_api.h> | |||||
| #include <vector> | |||||
| #include <memory> | |||||
| #include "kernel/gpu/gpu_kernel.h" | |||||
| #include "kernel/gpu/gpu_kernel_factory.h" | |||||
| #include "kernel/gpu/cuda_impl/tanh_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class TanhGpuKernel : public GpuKernel { | |||||
| public: | |||||
| TanhGpuKernel() : input_size_(0) {} | |||||
| ~TanhGpuKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||||
| const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override { | |||||
| auto x_addr = GetDeviceAddress<T>(inputs, 0); | |||||
| auto y_addr = GetDeviceAddress<T>(outputs, 0); | |||||
| Tanh(input_size_ / sizeof(T), x_addr, y_addr, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| input_size_ = sizeof(T); | |||||
| for (auto dim : input_shape) { | |||||
| input_size_ *= dim; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_); | |||||
| input_size_list_.push_back(input_size_); | |||||
| output_size_list_.push_back(input_size_); | |||||
| } | |||||
| private: | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| size_t input_size_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_LSTM_GPU_KERNEL_H_ | |||||
| @@ -0,0 +1,26 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "kernel/gpu/nn/tanh_grad_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE( | |||||
| TanhGrad, | |||||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||||
| TanhGradKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,76 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_ | |||||
| #include <cuda_runtime_api.h> | |||||
| #include <vector> | |||||
| #include <memory> | |||||
| #include "kernel/gpu/gpu_kernel.h" | |||||
| #include "kernel/gpu/gpu_kernel_factory.h" | |||||
| #include "kernel/gpu/cuda_impl/tanh_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class TanhGradKernel : public GpuKernel { | |||||
| public: | |||||
| TanhGradKernel() : input_size_(0) {} | |||||
| ~TanhGradKernel() override = default; | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &, | |||||
| const std::vector<AddressPtr> &outputs, uintptr_t stream_ptr) override { | |||||
| auto y_addr = GetDeviceAddress<T>(inputs, 0); | |||||
| auto dy_addr = GetDeviceAddress<T>(inputs, 1); | |||||
| auto dx_addr = GetDeviceAddress<T>(outputs, 0); | |||||
| TanhGrad(input_size_ / sizeof(T), y_addr, dy_addr, dx_addr, reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||||
| input_size_ = sizeof(T); | |||||
| for (auto dim : input_shape) { | |||||
| input_size_ *= dim; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_); | |||||
| input_size_list_.push_back(input_size_); | |||||
| output_size_list_.push_back(input_size_); | |||||
| } | |||||
| private: | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| size_t input_size_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_TANH_GRAD_KERNEL_H_ | |||||
| @@ -0,0 +1,72 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import pytest | |||||
| import numpy as np | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops import composite as C | |||||
| import mindspore.context as context | |||||
| context.set_context(mode=context.GRAPH_MODE, device_target="GPU") | |||||
| class TanhNet(nn.Cell): | |||||
| def __init__(self): | |||||
| super(TanhNet, self).__init__() | |||||
| self.tanh = P.Tanh() | |||||
| def construct(self, x): | |||||
| return self.tanh(x) | |||||
| class Grad(nn.Cell): | |||||
| def __init__(self, network): | |||||
| super(Grad, self).__init__() | |||||
| self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True) | |||||
| self.network = network | |||||
| def construct(self, input_data, sens): | |||||
| gout = self.grad(self.network)(input_data, sens) | |||||
| return gout | |||||
| @pytest.mark.level0 | |||||
| @pytest.mark.platform_x86_gpu_training | |||||
| @pytest.mark.env_onecard | |||||
| def test_Tanh(): | |||||
| x_np = np.array( | |||||
| [[ 0.28522366, 0.38033979, 1.54657853, -0.98530175, -0.54365635, 0.12652203, -1.33449938, -0.27737698], | |||||
| [ 2.06282293, 0.84635078, 0.16628414, -0.91823183, -0.72023044, -0.09147043, -0.04166984, -1.5664763 ], | |||||
| [-0.17157249, 0.44260951, -0.6683391, 1.13142613, 1.5536937, -0.32799768, -0.20016545, 0.06773927]], | |||||
| dtype= np.float32) | |||||
| dy_np = np.array( | |||||
| [[ 0.44969849, -0.187879, -0.64300827, 1.36638774, 0.89930276, -0.23835229, -0.67771854, -1.88984999], | |||||
| [ 2.00418801, 2.33336475, 0.00241747, 1.31558685, 0.06768817, -2.23008804, -0.26818366, -1.26873401], | |||||
| [ 1.83694105, 0.5339005, 0.51117424, 0.49202378, -0.83297819, -0.71001219, 0.18913512, 0.65580389]], | |||||
| dtype= np.float32) | |||||
| x_ms = Tensor(x_np) | |||||
| dy_ms = Tensor(dy_np) | |||||
| net = TanhNet() | |||||
| grad = Grad(net) | |||||
| output = grad(x_ms, dy_ms) | |||||
| expect = [[ 0.41501077, -0.16312202, -0.10675912, 0.58678646, 0.67828224, -0.23457714, -0.1643468 , -1.75159405], | |||||
| [ 0.12541081, 1.2251587 , 0.00235184, 0.62396731, 0.04191568, -2.21153283, -0.26771853, -0.20311764], | |||||
| [ 1.78391056, 0.44159236, 0.33690308, 0.16800483, -0.13651318, -0.63878956, 0.18175511, 0.65280384]] | |||||
| assert np.allclose(output[0].asnumpy(), expect) | |||||