diff --git a/mindspore/lite/internal/src/kernel/fp32/matmul.cc b/mindspore/lite/internal/src/kernel/fp32/matmul.cc index 5f79194b92..2e5c1e1795 100644 --- a/mindspore/lite/internal/src/kernel/fp32/matmul.cc +++ b/mindspore/lite/internal/src/kernel/fp32/matmul.cc @@ -116,7 +116,7 @@ int DoMatMulInferShape(const TensorPtrVector &in_tensors, const TensorPtrVector int DoMatMul(const TensorPtrVector &in_tensors, const TensorPtrVector &out_tensors, Node *node, mindspore::lite::Allocator *allocator) { - if (in_tensors[0]->data_ == NULL || in_tensors[1]->data_ ==NULL) { + if (in_tensors[0]->data_ == NULL || in_tensors[1]->data_ == NULL) { LITE_LOG_ERROR("input data is NULL!"); return RET_PARAM_INVALID; } diff --git a/mindspore/lite/nnacl/fp32/batchnorm.c b/mindspore/lite/nnacl/fp32/batchnorm.c index 2ed427140e..3c269c8ccc 100644 --- a/mindspore/lite/nnacl/fp32/batchnorm.c +++ b/mindspore/lite/nnacl/fp32/batchnorm.c @@ -68,7 +68,7 @@ void FusedBatchNormFp32MeanVar(const float *input, float momentum, float *run_me run_mean[f] = run_mean[f] / N; run_var[f] = run_var[f] / N - run_mean[f] * run_mean[f]; save_mean[f] = momentum * save_mean[f] + (1 - momentum) * run_mean[f]; - float inv_var = 1.f/sqrt(run_var[f]+param->epsilon_); + float inv_var = 1.f / sqrt(run_var[f] + param->epsilon_); save_inv_var[f] = momentum * save_inv_var[f] + (1 - momentum) * inv_var; } } diff --git a/mindspore/lite/nnacl/fp32/batchnorm.h b/mindspore/lite/nnacl/fp32/batchnorm.h index 6defc90b7e..fa071425a3 100644 --- a/mindspore/lite/nnacl/fp32/batchnorm.h +++ b/mindspore/lite/nnacl/fp32/batchnorm.h @@ -29,7 +29,7 @@ void FusedBatchNormFp32(const void *input, const void *scale, const void *offset const void *variance, BatchNormParameter *param, int task_id, void *output); void FusedBatchNormFp32MeanVar(const float *input, float momentum, float *run_mean, float *run_var, - BatchNormParameter *param, float *save_mean, float *save_var); + BatchNormParameter *param, float *save_mean, float *save_var); #ifdef __cplusplus } #endif diff --git a/mindspore/lite/nnacl/fp32_grad/softmax_grad.h b/mindspore/lite/nnacl/fp32_grad/softmax_grad.h index ad6f4fc8b2..44da4864d5 100644 --- a/mindspore/lite/nnacl/fp32_grad/softmax_grad.h +++ b/mindspore/lite/nnacl/fp32_grad/softmax_grad.h @@ -33,7 +33,7 @@ typedef struct SoftmaxCrossEntropyParameter { } SoftmaxCrossEntropyParameter; void SoftmaxGrad(const float *input_ptr, const float *yt_ptr, float *output_ptr, float *sum_data, - float *sum_mul, SoftmaxParameter *parameter); + float *sum_mul, SoftmaxParameter *parameter); #ifdef __cplusplus } #endif diff --git a/mindspore/lite/nnacl/int8/space_to_batch_int8.c b/mindspore/lite/nnacl/int8/space_to_batch_int8.c index f86049d730..8dcd0e5365 100644 --- a/mindspore/lite/nnacl/int8/space_to_batch_int8.c +++ b/mindspore/lite/nnacl/int8/space_to_batch_int8.c @@ -17,7 +17,7 @@ #include "nnacl/arithmetic_common.h" void DoSpaceToBatchNHWCInt8(const int8_t *input, int8_t *output, int *block_sizes, int *in_shape, - int *out_shape) { + int *out_shape) { int out_dim0 = out_shape[0]; int out_dim1 = out_shape[1]; int out_dim2 = out_shape[2]; diff --git a/mindspore/lite/src/CMakeLists.txt b/mindspore/lite/src/CMakeLists.txt index 5cb494cfaa..e511cbec73 100644 --- a/mindspore/lite/src/CMakeLists.txt +++ b/mindspore/lite/src/CMakeLists.txt @@ -95,3 +95,14 @@ if ("${CMAKE_BUILD_TYPE}" STREQUAL "Release" AND (PLATFORM_ARM64 OR PLATFORM_ARM ${TOP_DIR}/mindspore/lite/build/src/libmindspore-lite.so) endif () +if ("${CMAKE_BUILD_TYPE}" STREQUAL "Release") + if (PLATFORM_ARM64 OR PLATFORM_ARM32) + add_custom_command(TARGET mindspore-lite POST_BUILD + COMMAND ${ANDROID_NDK}/toolchains/aarch64-linux-android-4.9/prebuilt/linux-x86_64/aarch64-linux-android/bin/strip + ${TOP_DIR}/mindspore/lite/build/src/libmindspore-lite.so) + elseif (NOT WIN32) + add_custom_command(TARGET mindspore-lite POST_BUILD + COMMAND strip ${TOP_DIR}/mindspore/lite/build/src/libmindspore-lite.so) + endif () +endif () + diff --git a/mindspore/lite/src/ops/bias_grad.cc b/mindspore/lite/src/ops/bias_grad.cc index cee3f9cb27..d561e42503 100644 --- a/mindspore/lite/src/ops/bias_grad.cc +++ b/mindspore/lite/src/ops/bias_grad.cc @@ -100,6 +100,5 @@ int BiasGrad::InferShape(std::vector inputs, std::vector out return RET_OK; } - } // namespace lite } // namespace mindspore diff --git a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/sparse_softmax_cross_entropy_with_logits.h b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/sparse_softmax_cross_entropy_with_logits.h index 19d12ea8fb..3d00c0fffe 100644 --- a/mindspore/lite/src/runtime/kernel/arm/fp32_grad/sparse_softmax_cross_entropy_with_logits.h +++ b/mindspore/lite/src/runtime/kernel/arm/fp32_grad/sparse_softmax_cross_entropy_with_logits.h @@ -33,7 +33,7 @@ class SparseSoftmaxCrossEntropyWithLogitsCPUKernel : public LossKernel { const std::vector &outputs, const lite::Context *ctx, const mindspore::lite::PrimitiveC *primitive) - : LossKernel(parameter, inputs, outputs, ctx, primitive) , losses_(nullptr), sum_data_(nullptr) { + : LossKernel(parameter, inputs, outputs, ctx, primitive), losses_(nullptr), sum_data_(nullptr) { param = reinterpret_cast(parameter); } ~SparseSoftmaxCrossEntropyWithLogitsCPUKernel() override { diff --git a/mindspore/lite/src/tensor.h b/mindspore/lite/src/tensor.h index 0bbcdb7fb1..0fa96d3c03 100644 --- a/mindspore/lite/src/tensor.h +++ b/mindspore/lite/src/tensor.h @@ -30,7 +30,6 @@ namespace mindspore { namespace lite { - struct QuantArg { double scale; int32_t zeroPoint;