|
|
|
@@ -0,0 +1,69 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""LearningRateScheduler Callback class.""" |
|
|
|
|
|
|
|
import math |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
from mindspore.train.callback._callback import Callback |
|
|
|
from mindspore.ops import functional as F |
|
|
|
|
|
|
|
class LearningRateScheduler(Callback): |
|
|
|
""" |
|
|
|
Change the learning_rate during training. |
|
|
|
|
|
|
|
Note: |
|
|
|
This class are not supported on CPU. |
|
|
|
|
|
|
|
Args: |
|
|
|
learning_rate_function (Function): The function about how to change the learning rate during training. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> from _lr_scheduler_callback import LearningRateScheduler |
|
|
|
>>> import mindspore.nn as nn |
|
|
|
>>> from mindspore.train import Model |
|
|
|
... |
|
|
|
>>> def learning_rate_function(lr, cur_step_num): |
|
|
|
... if cur_step_num%1000 == 0: |
|
|
|
... lr = lr*0.1 |
|
|
|
... return lr |
|
|
|
... |
|
|
|
>>> lr = 0.1 |
|
|
|
>>> momentum = 0.9 |
|
|
|
>>> net = Net() |
|
|
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
>>> optim = nn.Momentum(net.trainable_params(), learning_rate=lr, momentum=momentum) |
|
|
|
>>> model = Model(net, loss_fn=loss, optimizer=optim) |
|
|
|
... |
|
|
|
>>> dataset = create_custom_dataset("custom_dataset_path") |
|
|
|
>>> model.train(1, dataset, callbacks=[LearningRateScheduler(learning_rate_function)], |
|
|
|
... dataset_sink_mode=False) |
|
|
|
|
|
|
|
""" |
|
|
|
|
|
|
|
def __init__(self, learning_rate_function): |
|
|
|
super(LearningRateScheduler, self).__init__() |
|
|
|
self.learning_rate_function = learning_rate_function |
|
|
|
|
|
|
|
def step_end(self, run_context): |
|
|
|
cb_params = run_context.original_args() |
|
|
|
arr_lr = cb_params.optimizer.learning_rate.asnumpy() |
|
|
|
lr = float(np.array2string(arr_lr)) |
|
|
|
new_lr = self.learning_rate_function(lr, cb_params.cur_step_num) |
|
|
|
if not math.isclose(lr, new_lr, rel_tol=1e-10): |
|
|
|
F.assign(cb_params.optimizer.learning_rate, Tensor(new_lr, mstype.float32)) |
|
|
|
print(f'At step {cb_params.cur_step_num}, learning_rate change to {new_lr}') |