| @@ -105,7 +105,7 @@ class TrainStepWarp(nn.Cell): | |||||
| def test_double_subgraphs(): | def test_double_subgraphs(): | ||||
| _set_multi_subgraphs() | _set_multi_subgraphs() | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(device_num=8, global_rank=0) | context.set_auto_parallel_context(device_num=8, global_rank=0) | ||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel") | context.set_auto_parallel_context(parallel_mode="auto_parallel") | ||||
| net = TrainStepWarp(NetWithLoss(Net())) | net = TrainStepWarp(NetWithLoss(Net())) | ||||
| @@ -156,7 +156,7 @@ class DatasetLenet(): | |||||
| return self | return self | ||||
| def test_double_subgraphs_train(): | def test_double_subgraphs_train(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(device_num=1, global_rank=0) | context.set_auto_parallel_context(device_num=1, global_rank=0) | ||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel") | context.set_auto_parallel_context(parallel_mode="auto_parallel") | ||||
| net = TrainStepWarp(NetWithLoss(Net())) | net = TrainStepWarp(NetWithLoss(Net())) | ||||
| @@ -118,7 +118,7 @@ _w1 = Tensor(np.ones([512, 128]), dtype=ms.float32) | |||||
| def test_auto_parallel(): | def test_auto_parallel(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) | context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) | ||||
| net = Full(_w1, 3) | net = Full(_w1, 3) | ||||
| net.set_auto_parallel() | net.set_auto_parallel() | ||||
| @@ -121,7 +121,7 @@ class TrainStepWarp(nn.Cell): | |||||
| def test_double_subgraphs(): | def test_double_subgraphs(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | ||||
| net = TrainStepWarp(NetWithLoss(Net())) | net = TrainStepWarp(NetWithLoss(Net())) | ||||
| _set_multi_subgraphs() | _set_multi_subgraphs() | ||||
| @@ -125,7 +125,7 @@ _w1 = Tensor(np.ones([512, 128, 1]), dtype=ms.float32) | |||||
| def test_auto_parallel(): | def test_auto_parallel(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) | context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) | ||||
| net = Full(_w1, 3) | net = Full(_w1, 3) | ||||
| net.set_auto_parallel() | net.set_auto_parallel() | ||||
| @@ -83,7 +83,7 @@ _w1 = Tensor(np.ones([512, 128]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| learning_rate = 0.1 | learning_rate = 0.1 | ||||
| momentum = 0.9 | momentum = 0.9 | ||||
| epoch_size = 2 | epoch_size = 2 | ||||
| @@ -68,7 +68,7 @@ def test_two_bn(): | |||||
| out = self.block2(out) | out = self.block2(out) | ||||
| return out | return out | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(device_num=8, global_rank=0) | context.set_auto_parallel_context(device_num=8, global_rank=0) | ||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel") | context.set_auto_parallel_context(parallel_mode="auto_parallel") | ||||
| net = NetWithLoss(Net()) | net = NetWithLoss(Net()) | ||||
| @@ -64,7 +64,7 @@ _x2 = Tensor(np.ones([64, 64]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -74,7 +74,7 @@ def compile_net(net): | |||||
| def compile_net2(net): | def compile_net2(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -80,7 +80,7 @@ w3 = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -95,7 +95,7 @@ def test_embeddinglookup_reducescatter_false_grad(): | |||||
| def test_embeddinglookup_reducescatter_true_grad(): | def test_embeddinglookup_reducescatter_true_grad(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| shape = [8, 8] | shape = [8, 8] | ||||
| offset = 8 | offset = 8 | ||||
| net = GradWrap(NetWithLoss(Net(shape, offset))) | net = GradWrap(NetWithLoss(Net(shape, offset))) | ||||
| @@ -52,7 +52,7 @@ _b = Tensor(np.ones([64, 64]), dtype=ms.float32) | |||||
| def test_train_and_eval(): | def test_train_and_eval(): | ||||
| context.set_context(save_graphs=True, mode=0) | |||||
| context.set_context(save_graphs=False, mode=0) | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16) | context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16) | ||||
| strategy1 = ((4, 4), (4, 4)) | strategy1 = ((4, 4), (4, 4)) | ||||
| strategy2 = ((4, 4),) | strategy2 = ((4, 4),) | ||||
| @@ -69,7 +69,7 @@ def test_train_and_eval(): | |||||
| context.reset_auto_parallel_context() | context.reset_auto_parallel_context() | ||||
| def test_train_and_eval_auto(): | def test_train_and_eval_auto(): | ||||
| context.set_context(save_graphs=True, mode=0) | |||||
| context.set_context(save_graphs=False, mode=0) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16) | context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16) | ||||
| strategy1 = ((4, 4), (4, 4)) | strategy1 = ((4, 4), (4, 4)) | ||||
| strategy2 = ((4, 4),) | strategy2 = ((4, 4),) | ||||
| @@ -63,7 +63,7 @@ _w1 = Tensor(np.ones([512, 128]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| learning_rate = 0.1 | learning_rate = 0.1 | ||||
| momentum = 0.9 | momentum = 0.9 | ||||
| epoch_size = 2 | epoch_size = 2 | ||||
| @@ -194,7 +194,7 @@ def test_loss_scale(): | |||||
| def test_loss_scale2(): | def test_loss_scale2(): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8) | context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8) | ||||
| predict = Tensor(np.ones([64, 64]), dtype=ms.float32) | predict = Tensor(np.ones([64, 64]), dtype=ms.float32) | ||||
| label = Tensor(np.ones([64,]), dtype=ms.int32) | label = Tensor(np.ones([64,]), dtype=ms.int32) | ||||
| @@ -66,7 +66,7 @@ _b = Tensor(np.ones([8, 8, 8]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1) | optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1) | ||||
| optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU") | optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU") | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| @@ -113,7 +113,7 @@ def test_normal_split_with_offset(): | |||||
| def test_auto_parallel_error(): | def test_auto_parallel_error(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2, global_rank=0) | context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2, global_rank=0) | ||||
| net = Net() | net = Net() | ||||
| with pytest.raises(RuntimeError): | with pytest.raises(RuntimeError): | ||||
| @@ -121,7 +121,7 @@ def test_auto_parallel_error(): | |||||
| def test_auto_parallel(): | def test_auto_parallel(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2, global_rank=0) | context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2, global_rank=0) | ||||
| net = Net(split_string="fake") | net = Net(split_string="fake") | ||||
| compile_net(net) | compile_net(net) | ||||
| @@ -60,7 +60,7 @@ _b = Tensor(np.ones([64, 8]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -106,7 +106,7 @@ def test_normal_split_with_offset(): | |||||
| def test_auto_parallel_error(): | def test_auto_parallel_error(): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2, global_rank=0) | context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=2, global_rank=0) | ||||
| net = Net() | net = Net() | ||||
| with pytest.raises(RuntimeError): | with pytest.raises(RuntimeError): | ||||
| @@ -63,7 +63,7 @@ _w1 = Tensor(np.ones([512, 128]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| learning_rate = 0.1 | learning_rate = 0.1 | ||||
| momentum = 0.9 | momentum = 0.9 | ||||
| epoch_size = 2 | epoch_size = 2 | ||||
| @@ -103,7 +103,7 @@ w3 = Tensor(np.ones([64, 64, 32]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| learning_rate = 0.1 | learning_rate = 0.1 | ||||
| momentum = 0.9 | momentum = 0.9 | ||||
| epoch_size = 2 | epoch_size = 2 | ||||
| @@ -90,7 +90,7 @@ _w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| learning_rate = 0.1 | learning_rate = 0.1 | ||||
| momentum = 0.9 | momentum = 0.9 | ||||
| epoch_size = 2 | epoch_size = 2 | ||||
| @@ -136,7 +136,7 @@ _x_c = Tensor(np.ones([8, 8, 8]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -146,7 +146,7 @@ def compile_net(net): | |||||
| def compile_net1(net): | def compile_net1(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -156,7 +156,7 @@ def compile_net1(net): | |||||
| def compile_net2(net): | def compile_net2(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -166,7 +166,7 @@ def compile_net2(net): | |||||
| def compile_net_con(net): | def compile_net_con(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -79,7 +79,7 @@ def clean_all_ckpt_files(folder_path): | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| learning_rate = 0.1 | learning_rate = 0.1 | ||||
| momentum = 0.9 | momentum = 0.9 | ||||
| epoch_size = 2 | epoch_size = 2 | ||||
| @@ -74,7 +74,7 @@ _w1 = Tensor(np.ones([64, 8]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| learning_rate = 0.1 | learning_rate = 0.1 | ||||
| momentum = 0.9 | momentum = 0.9 | ||||
| epoch_size = 2 | epoch_size = 2 | ||||
| @@ -40,7 +40,7 @@ _x = Tensor(np.ones([32, 16, 48, 64]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -73,7 +73,7 @@ def test_tensoradd_reshape_matmul(): | |||||
| strategy2 = ((8, 1), (1, 8)) | strategy2 = ((8, 1), (1, 8)) | ||||
| net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | ||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") | context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| x = Tensor(np.ones([32, 8, 16]), dtype=ms.float32) | x = Tensor(np.ones([32, 8, 16]), dtype=ms.float32) | ||||
| y = Tensor(np.ones([32, 8, 16]), dtype=ms.float32) | y = Tensor(np.ones([32, 8, 16]), dtype=ms.float32) | ||||
| @@ -99,7 +99,7 @@ def test_two_matmul(): | |||||
| strategy2 = ((8, 1), (1, 1)) | strategy2 = ((8, 1), (1, 1)) | ||||
| net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | ||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") | context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| x = Tensor(np.ones([128, 32]), dtype=ms.float32) | x = Tensor(np.ones([128, 32]), dtype=ms.float32) | ||||
| y = Tensor(np.ones([32, 64]), dtype=ms.float32) | y = Tensor(np.ones([32, 64]), dtype=ms.float32) | ||||
| @@ -40,7 +40,7 @@ _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -43,7 +43,7 @@ _x = Tensor(np.ones([64, 64]), dtype=ms.float32) | |||||
| _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | ||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -75,7 +75,7 @@ _x1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) | |||||
| _w2 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) | _w2 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) | ||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -85,7 +85,7 @@ def compile_net(net): | |||||
| def compile_net1(net): | def compile_net1(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -67,7 +67,7 @@ _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -60,7 +60,7 @@ _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -52,7 +52,7 @@ _b = Tensor(np.ones([64, 64]), dtype=ms.float32) | |||||
| def test_train_and_eval(): | def test_train_and_eval(): | ||||
| context.set_context(save_graphs=True, mode=0) | |||||
| context.set_context(save_graphs=False, mode=0) | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16) | context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16) | ||||
| strategy1 = ((4, 4), (4, 4)) | strategy1 = ((4, 4), (4, 4)) | ||||
| strategy2 = ((4, 4),) | strategy2 = ((4, 4),) | ||||
| @@ -141,7 +141,7 @@ def test_matmul_forward_reduce_scatter(): | |||||
| return out | return out | ||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| strategy1 = ((2, 2), (2, 2)) | strategy1 = ((2, 2), (2, 2)) | ||||
| strategy2 = ((4, 2), (4, 2)) | strategy2 = ((4, 2), (4, 2)) | ||||
| net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | ||||
| @@ -166,7 +166,7 @@ def test_matmul_forward_reduce_scatter_transpose(): | |||||
| return out | return out | ||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| strategy1 = ((2, 4), (2, 4)) | strategy1 = ((2, 4), (2, 4)) | ||||
| strategy2 = ((8, 2), (8, 2)) | strategy2 = ((8, 2), (8, 2)) | ||||
| net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) | ||||
| @@ -73,7 +73,7 @@ _x = Tensor(np.ones([48, 16]), dtype=ms.int32) | |||||
| def compile_net(net): | def compile_net(net): | ||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=False) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | ||||
| train_net = TrainOneStepCell(net, optimizer) | train_net = TrainOneStepCell(net, optimizer) | ||||
| train_net.set_auto_parallel() | train_net.set_auto_parallel() | ||||
| @@ -93,7 +93,7 @@ def test_virtualdataset_cell_3_inputs(): | |||||
| out = self.matmul2(out, b) | out = self.matmul2(out, b) | ||||
| return out | return out | ||||
| context.set_context(save_graphs=True) | |||||
| context.set_context(save_graphs=False) | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel") | context.set_auto_parallel_context(parallel_mode="auto_parallel") | ||||
| context.set_auto_parallel_context(device_num=8, global_rank=0) | context.set_auto_parallel_context(device_num=8, global_rank=0) | ||||
| net = GradWrap(VirtualDatasetCellTriple(NetWithLoss(Net(None, None, None)))) | net = GradWrap(VirtualDatasetCellTriple(NetWithLoss(Net(None, None, None)))) | ||||
| @@ -41,7 +41,7 @@ if [ $# -eq 1 ] && ([ "$1" == "stage1" ] || [ "$1" == "stage2" ] || [ "$1" == | |||||
| elif [ $1 == "stage2" ]; then | elif [ $1 == "stage2" ]; then | ||||
| echo "run python parallel" | echo "run python parallel" | ||||
| pytest -v $CURRPATH/parallel | |||||
| pytest -s $CURRPATH/parallel/*.py | |||||
| RET=$? | RET=$? | ||||
| if [ ${RET} -ne 0 ]; then | if [ ${RET} -ne 0 ]; then | ||||
| @@ -87,7 +87,7 @@ else | |||||
| exit ${RET} | exit ${RET} | ||||
| fi | fi | ||||
| pytest -v $CURRPATH/parallel | |||||
| pytest -v $CURRPATH/parallel/*.py | |||||
| RET=$? | RET=$? | ||||
| if [ ${RET} -ne 0 ]; then | if [ ${RET} -ne 0 ]; then | ||||
| exit ${RET} | exit ${RET} | ||||